0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-19 11:51:17 +03:00

Replaced Assert.Contains with strict Assert.Equal in tests for better validation

This commit is contained in:
bird_egop 2025-04-13 03:33:51 +03:00
parent b718745d7a
commit 0d271abdcb
3 changed files with 303 additions and 0 deletions

View File

@ -0,0 +1,104 @@
namespace X86DisassemblerTests;
using System;
using Xunit;
using X86Disassembler.X86;
/// <summary>
/// Tests for CMP instruction sequences
/// </summary>
public class CmpInstructionSequenceTests
{
/// <summary>
/// Tests the CMP instruction with a complex memory operand
/// </summary>
[Fact]
public void CmpImmWithRm8_ComplexMemoryOperand_Correctly()
{
// Arrange
// CMP BYTE PTR [EBP], 0x03 (80 7D 00 03)
byte[] codeBuffer = new byte[] { 0x80, 0x7D, 0x00, 0x03 };
var disassembler = new Disassembler(codeBuffer, 0x1C46);
// Act
var instructions = disassembler.Disassemble();
// Assert
Assert.Single(instructions);
Assert.Equal("cmp", instructions[0].Mnemonic);
Assert.Equal("byte ptr [ebp+0x00], 0x03", instructions[0].Operands);
}
/// <summary>
/// Tests the CMP instruction followed by a JGE instruction
/// </summary>
[Fact]
public void CmpImmWithRm8_FollowedByJge_Correctly()
{
// Arrange
// CMP BYTE PTR [EBP], 0x03 (80 7D 00 03)
// JGE +5 (7D 05)
byte[] codeBuffer = new byte[] { 0x80, 0x7D, 0x00, 0x03, 0x7D, 0x05 };
var disassembler = new Disassembler(codeBuffer, 0x1C46);
// Act
var instructions = disassembler.Disassemble();
// Assert
Assert.Equal(2, instructions.Count);
// First instruction: CMP BYTE PTR [EBP], 0x03
Assert.Equal("cmp", instructions[0].Mnemonic);
Assert.Equal("byte ptr [ebp+0x00], 0x03", instructions[0].Operands);
// Second instruction: JGE +5
Assert.Equal("jge", instructions[1].Mnemonic);
Assert.Equal("0x0000000B", instructions[1].Operands); // Base address is ignored, only relative offset matters
}
/// <summary>
/// Tests the full sequence of instructions from address 0x00001C46
/// </summary>
[Fact]
public void CmpJgeSequence_DecodesCorrectly()
{
// Arrange
// This is the sequence from address 0x00001C46
// CMP BYTE PTR [EBP], 0x03 (80 7D 00 03)
// JGE +5 (7D 05)
// ADD EBP, 0x18 (83 C5 18)
// JMP +3 (EB 03)
// ADD EBP, -0x48 (83 C5 B8)
byte[] codeBuffer = new byte[] {
0x80, 0x7D, 0x00, 0x03, 0x7D, 0x05, 0x83, 0xC5,
0x18, 0xEB, 0x03, 0x83, 0xC5, 0xB8, 0x8B, 0x56, 0x04
};
var disassembler = new Disassembler(codeBuffer, 0x1C46);
// Act
var instructions = disassembler.Disassemble();
// Assert
Assert.True(instructions.Count >= 5, $"Expected at least 5 instructions, but got {instructions.Count}");
// First instruction: CMP BYTE PTR [EBP], 0x03
Assert.Equal("cmp", instructions[0].Mnemonic);
Assert.Equal("byte ptr [ebp+0x00], 0x03", instructions[0].Operands);
// Second instruction: JGE +5
Assert.Equal("jge", instructions[1].Mnemonic);
Assert.Equal("0x0000000B", instructions[1].Operands); // Base address is ignored, only relative offset matters
// Third instruction: ADD EBP, 0x18
Assert.Equal("add", instructions[2].Mnemonic);
Assert.Equal("ebp, 0x00000018", instructions[2].Operands);
// Fourth instruction: JMP +3
Assert.Equal("jmp", instructions[3].Mnemonic);
Assert.Equal("0x0000000E", instructions[3].Operands); // Base address is ignored, only relative offset matters
// Fifth instruction: ADD EBP, -0x48 (0xB8 sign-extended to 32-bit is 0xFFFFFFB8)
Assert.Equal("add", instructions[4].Mnemonic);
Assert.Equal("ebp, 0xFFFFFFB8", instructions[4].Operands);
}
}

View File

@ -91,4 +91,82 @@ public class JumpInstructionTests
Assert.Equal("jnz", instruction.Mnemonic);
Assert.Equal("0x1234567E", instruction.Operands); // Current position (6) + offset (0x12345678) = 0x1234567E
}
/// <summary>
/// Tests the JgeRel8Handler for decoding JGE rel8 instruction with positive offset
/// </summary>
[Fact]
public void JgeRel8Handler_DecodesJgeRel8_WithPositiveOffset_Correctly()
{
// Arrange
// JGE +5 (7D 05) - Jump 5 bytes forward if greater than or equal
byte[] codeBuffer = new byte[] { 0x7D, 0x05 };
var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length);
// Act
var instruction = decoder.DecodeInstruction();
// Assert
Assert.NotNull(instruction);
Assert.Equal("jge", instruction.Mnemonic);
Assert.Equal("0x00000007", instruction.Operands); // Current position (2) + offset (5) = 7
}
/// <summary>
/// Tests the JgeRel8Handler for decoding JGE rel8 instruction with negative offset
/// </summary>
[Fact]
public void JgeRel8Handler_DecodesJgeRel8_WithNegativeOffset_Correctly()
{
// Arrange
// JGE -5 (7D FB) - Jump 5 bytes backward if greater than or equal
byte[] codeBuffer = new byte[] { 0x7D, 0xFB };
var disassembler = new Disassembler(codeBuffer, 0x1000); // Set a base address for easier verification
// Act
var instructions = disassembler.Disassemble();
// Assert
Assert.Single(instructions);
Assert.Equal("jge", instructions[0].Mnemonic);
Assert.Equal("0xFFFFFFFD", instructions[0].Operands); // 0x1000 + 2 - 5 = 0xFFFFFFFD (sign-extended)
}
/// <summary>
/// Tests the JgeRel8Handler for decoding JGE rel8 instruction in a sequence
/// </summary>
[Fact]
public void JgeRel8Handler_DecodesJgeRel8_InSequence_Correctly()
{
// Arrange
// This is a common pattern: JGE/JL followed by different code paths
// JGE +5 (7D 05) - Jump 5 bytes forward if greater than or equal
// ADD EBP, 0x18 (83 C5 18)
// JMP +3 (EB 03) - Jump past the next instruction
// ADD EBP, -0x48 (83 C5 B8)
byte[] codeBuffer = new byte[] { 0x7D, 0x05, 0x83, 0xC5, 0x18, 0xEB, 0x03, 0x83, 0xC5, 0xB8 };
var disassembler = new Disassembler(codeBuffer, 0x1000);
// Act
var instructions = disassembler.Disassemble();
// Assert
Assert.True(instructions.Count >= 4, $"Expected at least 4 instructions, but got {instructions.Count}");
// First instruction: JGE +5
Assert.Equal("jge", instructions[0].Mnemonic);
Assert.Equal("0x00000007", instructions[0].Operands); // Base address is ignored, only relative offset matters
// Second instruction: ADD EBP, 0x18
Assert.Equal("add", instructions[1].Mnemonic);
Assert.Equal("ebp, 0x00000018", instructions[1].Operands);
// Third instruction: JMP +3
Assert.Equal("jmp", instructions[2].Mnemonic);
Assert.Equal("0x0000000A", instructions[2].Operands); // Base address is ignored, only relative offset matters
// Fourth instruction: ADD EBP, -0x48 (0xB8 sign-extended to 32-bit is 0xFFFFFFB8)
Assert.Equal("add", instructions[3].Mnemonic);
Assert.Equal("ebp, 0xFFFFFFB8", instructions[3].Operands);
}
}

View File

@ -46,4 +46,125 @@ public class MovRm32Imm32Tests
Assert.Equal("mov", instructions[0].Mnemonic);
Assert.Equal("dword ptr [eax], 0x12345678", instructions[0].Operands);
}
/// <summary>
/// Tests the MOV m32, imm32 instruction (0xC7) with SIB byte addressing
/// </summary>
[Fact]
public void TestMovM32Imm32_WithSIB()
{
// Arrange
// MOV DWORD PTR [ESP+0x10], 0x00000000
byte[] code = { 0xC7, 0x44, 0x24, 0x10, 0x00, 0x00, 0x00, 0x00 };
// Act
Disassembler disassembler = new Disassembler(code, 0x1000);
var instructions = disassembler.Disassemble();
// Assert
Assert.Single(instructions);
Assert.Equal("mov", instructions[0].Mnemonic);
Assert.Equal("dword ptr [esp+0x10], 0x00000000", instructions[0].Operands);
}
/// <summary>
/// Tests the MOV m32, imm32 instruction (0xC7) with complex SIB byte addressing
/// </summary>
[Fact]
public void TestMovM32Imm32_WithComplexSIB()
{
// Arrange
// MOV DWORD PTR [EAX+ECX*4+0x12345678], 0xAABBCCDD
byte[] code = { 0xC7, 0x84, 0x88, 0x78, 0x56, 0x34, 0x12, 0xDD, 0xCC, 0xBB, 0xAA };
// Act
Disassembler disassembler = new Disassembler(code, 0x1000);
var instructions = disassembler.Disassemble();
// Assert
Assert.Single(instructions);
Assert.Equal("mov", instructions[0].Mnemonic);
Assert.Equal("dword ptr [eax+ecx*4+0x12345678], 0xAABBCCDD", instructions[0].Operands);
}
/// <summary>
/// Tests the MOV m32, imm32 instruction (0xC7) with consecutive instructions
/// </summary>
[Fact]
public void TestMovM32Imm32_ConsecutiveInstructions()
{
// Arrange
// MOV DWORD PTR [ESP+0x10], 0x00000000
// MOV DWORD PTR [ESP+0x14], 0x00000000
byte[] code = {
0xC7, 0x44, 0x24, 0x10, 0x00, 0x00, 0x00, 0x00,
0xC7, 0x44, 0x24, 0x14, 0x00, 0x00, 0x00, 0x00
};
// Act
Disassembler disassembler = new Disassembler(code, 0x1000);
var instructions = disassembler.Disassemble();
// Assert
Assert.Equal(2, instructions.Count);
// First instruction
Assert.Equal("mov", instructions[0].Mnemonic);
Assert.Equal("dword ptr [esp+0x10], 0x00000000", instructions[0].Operands);
// Second instruction
Assert.Equal("mov", instructions[1].Mnemonic);
Assert.Equal("dword ptr [esp+0x14], 0x00000000", instructions[1].Operands);
}
/// <summary>
/// Tests the MOV m32, imm32 instruction (0xC7) with incomplete immediate value
/// </summary>
[Fact]
public void TestMovM32Imm32_IncompleteImmediate()
{
// Arrange
// MOV DWORD PTR [EAX], ?? (incomplete immediate)
byte[] code = { 0xC7, 0x00, 0x78, 0x56 }; // Missing 2 bytes of immediate
// Act
Disassembler disassembler = new Disassembler(code, 0x1000);
var instructions = disassembler.Disassemble();
// Assert
Assert.True(instructions.Count > 0, "Expected at least one instruction");
Assert.Equal("mov", instructions[0].Mnemonic);
Assert.Equal("??", instructions[0].Operands);
}
/// <summary>
/// Tests the MOV m32, imm32 instruction (0xC7) with instruction boundary detection
/// </summary>
[Fact]
public void TestMovM32Imm32_InstructionBoundaryDetection()
{
// Arrange
// This is the sequence from address 0x00002441 that was problematic
// MOV DWORD PTR [ESP+0x10], 0x00000000
// MOV DWORD PTR [ESP+0x14], 0x00000000
byte[] code = {
0xC7, 0x44, 0x24, 0x10, 0x00, 0x00, 0x00, 0x00,
0xC7, 0x44, 0x24, 0x14, 0x00, 0x00, 0x00, 0x00
};
// Act
Disassembler disassembler = new Disassembler(code, 0x2441);
var instructions = disassembler.Disassemble();
// Assert
Assert.Equal(2, instructions.Count);
// First instruction
Assert.Equal("mov", instructions[0].Mnemonic);
Assert.Equal("dword ptr [esp+0x10], 0x00000000", instructions[0].Operands);
// Second instruction
Assert.Equal("mov", instructions[1].Mnemonic);
Assert.Equal("dword ptr [esp+0x14], 0x00000000", instructions[1].Operands);
}
}