0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-06-20 08:18:36 +03:00

Fixed floating point instruction handling. Removed redundant FNSTSW AX check from FloatingPointHandler and added dedicated test for FnstswHandler.

This commit is contained in:
bird_egop
2025-04-12 21:27:17 +03:00
parent fe0b04f5a1
commit 6ed6a7bd00
7 changed files with 42 additions and 14 deletions

View File

@ -0,0 +1,56 @@
namespace X86Disassembler.X86.Handlers.Test;
/// <summary>
/// Handler for TEST AL, imm8 instruction (0xA8)
/// </summary>
public class TestAlImmHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the TestAlImmHandler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
/// <param name="decoder">The instruction decoder that owns this handler</param>
/// <param name="length">The length of the buffer</param>
public TestAlImmHandler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0xA8;
}
/// <summary>
/// Decodes a TEST AL, imm8 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the mnemonic
instruction.Mnemonic = "test";
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Read the immediate value
byte imm8 = CodeBuffer[position];
Decoder.SetPosition(position + 1);
// Set the operands
instruction.Operands = $"al, 0x{imm8:X2}";
return true;
}
}

View File

@ -0,0 +1,63 @@
namespace X86Disassembler.X86.Handlers.Test;
/// <summary>
/// Handler for TEST EAX, imm32 instruction (0xA9)
/// </summary>
public class TestEaxImmHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the TestEaxImmHandler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
/// <param name="decoder">The instruction decoder that owns this handler</param>
/// <param name="length">The length of the buffer</param>
public TestEaxImmHandler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0xA9;
}
/// <summary>
/// Decodes a TEST EAX, imm32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the mnemonic
instruction.Mnemonic = "test";
int position = Decoder.GetPosition();
if (position + 3 >= Length)
{
return false;
}
// Read the immediate value - x86 is little-endian, so we need to read the bytes in the correct order
byte b0 = CodeBuffer[position];
byte b1 = CodeBuffer[position + 1];
byte b2 = CodeBuffer[position + 2];
byte b3 = CodeBuffer[position + 3];
// Combine the bytes to form a 32-bit immediate value
uint imm32 = (uint)(b0 | (b1 << 8) | (b2 << 16) | (b3 << 24));
Decoder.SetPosition(position + 4);
// Set the operands
instruction.Operands = $"eax, 0x{imm32:X8}";
return true;
}
}

View File

@ -0,0 +1,98 @@
namespace X86Disassembler.X86.Handlers.Test;
/// <summary>
/// Handler for TEST r/m8, r8 instruction (0x84)
/// </summary>
public class TestRegMem8Handler : InstructionHandler
{
// ModR/M decoder
private readonly ModRMDecoder _modRMDecoder;
/// <summary>
/// Initializes a new instance of the TestRegMem8Handler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
/// <param name="decoder">The instruction decoder that owns this handler</param>
/// <param name="length">The length of the buffer</param>
public TestRegMem8Handler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
_modRMDecoder = new ModRMDecoder(codeBuffer, decoder, length);
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0x84;
}
/// <summary>
/// Decodes a TEST r/m8, r8 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the mnemonic
instruction.Mnemonic = "test";
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Read the ModR/M byte
byte modRM = CodeBuffer[position++];
Decoder.SetPosition(position);
// Extract the fields from the ModR/M byte
byte mod = (byte)((modRM & 0xC0) >> 6);
byte reg = (byte)((modRM & 0x38) >> 3);
byte rm = (byte)(modRM & 0x07);
// For direct register addressing (mod == 3), the r/m field specifies a register
if (mod == 3)
{
// Get the register names
string rmReg = GetRegister8(rm);
string regReg = GetRegister8(reg);
// Set the operands (TEST r/m8, r8)
// In x86 assembly, the TEST instruction has the operand order r/m8, r8
// According to Ghidra and standard x86 assembly convention, it should be TEST CL,AL
// where CL is the r/m operand and AL is the reg operand
instruction.Operands = $"{rmReg}, {regReg}";
}
else
{
// Decode the memory operand
string memOperand = _modRMDecoder.DecodeModRM(mod, rm, true);
// Get the register name
string regReg = GetRegister8(reg);
// Set the operands (TEST r/m8, r8)
instruction.Operands = $"{memOperand}, {regReg}";
}
return true;
}
/// <summary>
/// Gets the 8-bit register name for the given register index
/// </summary>
/// <param name="reg">The register index</param>
/// <returns>The register name</returns>
private static string GetRegister8(byte reg)
{
string[] registerNames = { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh" };
return registerNames[reg & 0x07];
}
}

View File

@ -0,0 +1,98 @@
namespace X86Disassembler.X86.Handlers.Test;
/// <summary>
/// Handler for TEST r/m32, r32 instruction (0x85)
/// </summary>
public class TestRegMemHandler : InstructionHandler
{
// ModR/M decoder
private readonly ModRMDecoder _modRMDecoder;
/// <summary>
/// Initializes a new instance of the TestRegMemHandler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
/// <param name="decoder">The instruction decoder that owns this handler</param>
/// <param name="length">The length of the buffer</param>
public TestRegMemHandler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
_modRMDecoder = new ModRMDecoder(codeBuffer, decoder, length);
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0x85;
}
/// <summary>
/// Decodes a TEST r/m32, r32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the mnemonic
instruction.Mnemonic = "test";
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Read the ModR/M byte
byte modRM = CodeBuffer[position++];
Decoder.SetPosition(position);
// Extract the fields from the ModR/M byte
byte mod = (byte)((modRM & 0xC0) >> 6);
byte reg = (byte)((modRM & 0x38) >> 3);
byte rm = (byte)(modRM & 0x07);
// For direct register addressing (mod == 3), the r/m field specifies a register
if (mod == 3)
{
// Get the register names
string rmReg = GetRegister32(rm);
string regReg = GetRegister32(reg);
// Set the operands (TEST r/m32, r32)
// In x86 assembly, the TEST instruction has the operand order r/m32, r32
// According to Ghidra and standard x86 assembly convention, it should be TEST ECX,EAX
// where ECX is the r/m operand and EAX is the reg operand
instruction.Operands = $"{rmReg}, {regReg}";
}
else
{
// Decode the memory operand
string memOperand = _modRMDecoder.DecodeModRM(mod, rm, false);
// Get the register name
string regReg = GetRegister32(reg);
// Set the operands (TEST r/m32, r32)
instruction.Operands = $"{memOperand}, {regReg}";
}
return true;
}
/// <summary>
/// Gets the 32-bit register name for the given register index
/// </summary>
/// <param name="reg">The register index</param>
/// <returns>The register name</returns>
private static string GetRegister32(byte reg)
{
string[] registerNames = { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi" };
return registerNames[reg & 0x07];
}
}