0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-21 12:51:18 +03:00

Implemented enhanced x86 disassembler with improved instruction decoding and display

This commit is contained in:
bird_egop 2025-04-12 18:41:40 +03:00
parent 6a69b0b91b
commit 9b5ec7e0d6
7 changed files with 897 additions and 1017 deletions

View File

@ -21,7 +21,7 @@ public class OptionalHeader
public uint BaseOfData; // Base of data section (PE32 only) public uint BaseOfData; // Base of data section (PE32 only)
// Windows-specific fields // Windows-specific fields
public object ImageBase; // Image base address (uint for PE32, ulong for PE32+) public ulong ImageBase; // Image base address (uint for PE32, ulong for PE32+)
public uint SectionAlignment; // Section alignment public uint SectionAlignment; // Section alignment
public uint FileAlignment; // File alignment public uint FileAlignment; // File alignment
public ushort MajorOperatingSystemVersion; // Major OS version public ushort MajorOperatingSystemVersion; // Major OS version
@ -36,10 +36,10 @@ public class OptionalHeader
public uint CheckSum; // Checksum public uint CheckSum; // Checksum
public ushort Subsystem; // Subsystem public ushort Subsystem; // Subsystem
public ushort DllCharacteristics; // DLL characteristics public ushort DllCharacteristics; // DLL characteristics
public object SizeOfStackReserve; // Size of stack reserve (uint for PE32, ulong for PE32+) public ulong SizeOfStackReserve; // Size of stack reserve (uint for PE32, ulong for PE32+)
public object SizeOfStackCommit; // Size of stack commit (uint for PE32, ulong for PE32+) public ulong SizeOfStackCommit; // Size of stack commit (uint for PE32, ulong for PE32+)
public object SizeOfHeapReserve; // Size of heap reserve (uint for PE32, ulong for PE32+) public ulong SizeOfHeapReserve; // Size of heap reserve (uint for PE32, ulong for PE32+)
public object SizeOfHeapCommit; // Size of heap commit (uint for PE32, ulong for PE32+) public ulong SizeOfHeapCommit; // Size of heap commit (uint for PE32, ulong for PE32+)
public uint LoaderFlags; // Loader flags public uint LoaderFlags; // Loader flags
public uint NumberOfRvaAndSizes; // Number of RVA and sizes public uint NumberOfRvaAndSizes; // Number of RVA and sizes

View File

@ -1,895 +0,0 @@
using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.InteropServices;
using System.Text;
namespace X86Disassembler
{
/// <summary>
/// Represents a Portable Executable (PE) file format parser
/// </summary>
public class PEFormat
{
// DOS Header constants
private const ushort DOS_SIGNATURE = 0x5A4D; // 'MZ'
private const uint PE_SIGNATURE = 0x00004550; // 'PE\0\0'
// Optional Header Magic values
private const ushort PE32_MAGIC = 0x10B; // 32-bit executable
private const ushort PE32PLUS_MAGIC = 0x20B; // 64-bit executable
// Section characteristics flags
private const uint IMAGE_SCN_CNT_CODE = 0x00000020; // Section contains code
private const uint IMAGE_SCN_MEM_EXECUTE = 0x20000000; // Section is executable
private const uint IMAGE_SCN_MEM_READ = 0x40000000; // Section is readable
private const uint IMAGE_SCN_MEM_WRITE = 0x80000000; // Section is writable
// Data directories
private const int IMAGE_DIRECTORY_ENTRY_EXPORT = 0; // Export Directory
private const int IMAGE_DIRECTORY_ENTRY_IMPORT = 1; // Import Directory
private const int IMAGE_DIRECTORY_ENTRY_RESOURCE = 2; // Resource Directory
private const int IMAGE_DIRECTORY_ENTRY_EXCEPTION = 3; // Exception Directory
private const int IMAGE_DIRECTORY_ENTRY_SECURITY = 4; // Security Directory
private const int IMAGE_DIRECTORY_ENTRY_BASERELOC = 5; // Base Relocation Table
private const int IMAGE_DIRECTORY_ENTRY_DEBUG = 6; // Debug Directory
private const int IMAGE_DIRECTORY_ENTRY_ARCHITECTURE = 7; // Architecture Specific Data
private const int IMAGE_DIRECTORY_ENTRY_GLOBALPTR = 8; // RVA of GP
private const int IMAGE_DIRECTORY_ENTRY_TLS = 9; // TLS Directory
private const int IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG = 10; // Load Configuration Directory
private const int IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT = 11; // Bound Import Directory
private const int IMAGE_DIRECTORY_ENTRY_IAT = 12; // Import Address Table
private const int IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT = 13; // Delay Load Import Descriptors
private const int IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR = 14; // COM Runtime descriptor
// PE file data
private byte[] _fileData;
// Parsed headers
public DOSHeader DosHeader { get; private set; }
public FileHeader FileHeader { get; private set; }
public OptionalHeader OptionalHeader { get; private set; }
public List<SectionHeader> SectionHeaders { get; private set; }
public bool Is64Bit { get; private set; }
// Export and Import information
public ExportDirectory ExportDirectory { get; private set; }
public List<ExportedFunction> ExportedFunctions { get; private set; }
public List<ImportDescriptor> ImportDescriptors { get; private set; }
/// <summary>
/// Parses a PE file from the given byte array
/// </summary>
/// <param name="fileData">The raw file data</param>
public PEFormat(byte[] fileData)
{
_fileData = fileData;
SectionHeaders = new List<SectionHeader>();
ExportedFunctions = new List<ExportedFunction>();
ImportDescriptors = new List<ImportDescriptor>();
Parse();
}
/// <summary>
/// Parses the PE file structure
/// </summary>
private void Parse()
{
using (MemoryStream stream = new MemoryStream(_fileData))
using (BinaryReader reader = new BinaryReader(stream))
{
// Parse DOS header
DosHeader = ParseDOSHeader(reader);
// Move to PE header
reader.BaseStream.Seek(DosHeader.e_lfanew, SeekOrigin.Begin);
// Verify PE signature
uint peSignature = reader.ReadUInt32();
if (peSignature != PE_SIGNATURE)
{
throw new InvalidDataException("Invalid PE signature");
}
// Parse File Header
FileHeader = ParseFileHeader(reader);
// Parse Optional Header
OptionalHeader = ParseOptionalHeader(reader);
// Parse Section Headers
for (int i = 0; i < FileHeader.NumberOfSections; i++)
{
SectionHeaders.Add(ParseSectionHeader(reader));
}
// Parse Export Directory
if (OptionalHeader.DataDirectories.Length > IMAGE_DIRECTORY_ENTRY_EXPORT &&
OptionalHeader.DataDirectories[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress != 0)
{
ExportDirectory = ParseExportDirectory(reader, OptionalHeader.DataDirectories[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
ParseExportedFunctions(reader);
}
// Parse Import Descriptors
if (OptionalHeader.DataDirectories.Length > IMAGE_DIRECTORY_ENTRY_IMPORT &&
OptionalHeader.DataDirectories[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress != 0)
{
ImportDescriptors = ParseImportDescriptors(reader, OptionalHeader.DataDirectories[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);
}
}
}
/// <summary>
/// Parses the DOS header
/// </summary>
private DOSHeader ParseDOSHeader(BinaryReader reader)
{
DOSHeader header = new DOSHeader();
header.e_magic = reader.ReadUInt16();
if (header.e_magic != DOS_SIGNATURE)
{
throw new InvalidDataException("Invalid DOS signature (MZ)");
}
header.e_cblp = reader.ReadUInt16();
header.e_cp = reader.ReadUInt16();
header.e_crlc = reader.ReadUInt16();
header.e_cparhdr = reader.ReadUInt16();
header.e_minalloc = reader.ReadUInt16();
header.e_maxalloc = reader.ReadUInt16();
header.e_ss = reader.ReadUInt16();
header.e_sp = reader.ReadUInt16();
header.e_csum = reader.ReadUInt16();
header.e_ip = reader.ReadUInt16();
header.e_cs = reader.ReadUInt16();
header.e_lfarlc = reader.ReadUInt16();
header.e_ovno = reader.ReadUInt16();
header.e_res = new ushort[4];
for (int i = 0; i < 4; i++)
{
header.e_res[i] = reader.ReadUInt16();
}
header.e_oemid = reader.ReadUInt16();
header.e_oeminfo = reader.ReadUInt16();
header.e_res2 = new ushort[10];
for (int i = 0; i < 10; i++)
{
header.e_res2[i] = reader.ReadUInt16();
}
header.e_lfanew = reader.ReadUInt32();
return header;
}
/// <summary>
/// Parses the File header
/// </summary>
private FileHeader ParseFileHeader(BinaryReader reader)
{
FileHeader header = new FileHeader();
header.Machine = reader.ReadUInt16();
header.NumberOfSections = reader.ReadUInt16();
header.TimeDateStamp = reader.ReadUInt32();
header.PointerToSymbolTable = reader.ReadUInt32();
header.NumberOfSymbols = reader.ReadUInt32();
header.SizeOfOptionalHeader = reader.ReadUInt16();
header.Characteristics = reader.ReadUInt16();
return header;
}
/// <summary>
/// Parses the Optional header
/// </summary>
private OptionalHeader ParseOptionalHeader(BinaryReader reader)
{
OptionalHeader header = new OptionalHeader();
// Standard fields
header.Magic = reader.ReadUInt16();
// Determine if this is a PE32 or PE32+ file
Is64Bit = header.Magic == PE32PLUS_MAGIC;
header.MajorLinkerVersion = reader.ReadByte();
header.MinorLinkerVersion = reader.ReadByte();
header.SizeOfCode = reader.ReadUInt32();
header.SizeOfInitializedData = reader.ReadUInt32();
header.SizeOfUninitializedData = reader.ReadUInt32();
header.AddressOfEntryPoint = reader.ReadUInt32();
header.BaseOfCode = reader.ReadUInt32();
// PE32 has BaseOfData, PE32+ doesn't
if (!Is64Bit)
{
header.BaseOfData = reader.ReadUInt32();
}
// Windows-specific fields
if (Is64Bit)
{
header.ImageBase = reader.ReadUInt64();
}
else
{
header.ImageBase = reader.ReadUInt32();
}
header.SectionAlignment = reader.ReadUInt32();
header.FileAlignment = reader.ReadUInt32();
header.MajorOperatingSystemVersion = reader.ReadUInt16();
header.MinorOperatingSystemVersion = reader.ReadUInt16();
header.MajorImageVersion = reader.ReadUInt16();
header.MinorImageVersion = reader.ReadUInt16();
header.MajorSubsystemVersion = reader.ReadUInt16();
header.MinorSubsystemVersion = reader.ReadUInt16();
header.Win32VersionValue = reader.ReadUInt32();
header.SizeOfImage = reader.ReadUInt32();
header.SizeOfHeaders = reader.ReadUInt32();
header.CheckSum = reader.ReadUInt32();
header.Subsystem = reader.ReadUInt16();
header.DllCharacteristics = reader.ReadUInt16();
// Size fields differ between PE32 and PE32+
if (Is64Bit)
{
header.SizeOfStackReserve = reader.ReadUInt64();
header.SizeOfStackCommit = reader.ReadUInt64();
header.SizeOfHeapReserve = reader.ReadUInt64();
header.SizeOfHeapCommit = reader.ReadUInt64();
}
else
{
header.SizeOfStackReserve = reader.ReadUInt32();
header.SizeOfStackCommit = reader.ReadUInt32();
header.SizeOfHeapReserve = reader.ReadUInt32();
header.SizeOfHeapCommit = reader.ReadUInt32();
}
header.LoaderFlags = reader.ReadUInt32();
header.NumberOfRvaAndSizes = reader.ReadUInt32();
// Data directories
int numDirectories = (int)Math.Min(header.NumberOfRvaAndSizes, 16); // Maximum of 16 directories
header.DataDirectories = new DataDirectory[numDirectories];
for (int i = 0; i < numDirectories; i++)
{
DataDirectory dir = new DataDirectory();
dir.VirtualAddress = reader.ReadUInt32();
dir.Size = reader.ReadUInt32();
header.DataDirectories[i] = dir;
}
return header;
}
/// <summary>
/// Parses a section header
/// </summary>
private SectionHeader ParseSectionHeader(BinaryReader reader)
{
SectionHeader header = new SectionHeader();
// Read section name (8 bytes)
byte[] nameBytes = reader.ReadBytes(8);
// Convert to string, removing any null characters
header.Name = Encoding.ASCII.GetString(nameBytes).TrimEnd('\0');
header.VirtualSize = reader.ReadUInt32();
header.VirtualAddress = reader.ReadUInt32();
header.SizeOfRawData = reader.ReadUInt32();
header.PointerToRawData = reader.ReadUInt32();
header.PointerToRelocations = reader.ReadUInt32();
header.PointerToLinenumbers = reader.ReadUInt32();
header.NumberOfRelocations = reader.ReadUInt16();
header.NumberOfLinenumbers = reader.ReadUInt16();
header.Characteristics = reader.ReadUInt32();
return header;
}
/// <summary>
/// Parses the Export Directory
/// </summary>
private ExportDirectory ParseExportDirectory(BinaryReader reader, uint rva)
{
ExportDirectory directory = new ExportDirectory();
reader.BaseStream.Seek(RvaToOffset(rva), SeekOrigin.Begin);
directory.Characteristics = reader.ReadUInt32();
directory.TimeDateStamp = reader.ReadUInt32();
directory.MajorVersion = reader.ReadUInt16();
directory.MinorVersion = reader.ReadUInt16();
directory.Name = reader.ReadUInt32();
directory.Base = reader.ReadUInt32();
directory.NumberOfFunctions = reader.ReadUInt32();
directory.NumberOfNames = reader.ReadUInt32();
directory.AddressOfFunctions = reader.ReadUInt32();
directory.AddressOfNames = reader.ReadUInt32();
directory.AddressOfNameOrdinals = reader.ReadUInt32();
// Read the DLL name
try
{
uint dllNameRVA = directory.Name;
uint dllNameOffset = RvaToOffset(dllNameRVA);
reader.BaseStream.Seek(dllNameOffset, SeekOrigin.Begin);
// Read the null-terminated ASCII string
StringBuilder nameBuilder = new StringBuilder();
byte b;
while ((b = reader.ReadByte()) != 0)
{
nameBuilder.Append((char)b);
}
directory.DllName = nameBuilder.ToString();
}
catch (Exception)
{
directory.DllName = "Unknown";
}
return directory;
}
/// <summary>
/// Parses the Import Descriptors
/// </summary>
private List<ImportDescriptor> ParseImportDescriptors(BinaryReader reader, uint rva)
{
List<ImportDescriptor> descriptors = new List<ImportDescriptor>();
try
{
uint importTableOffset = RvaToOffset(rva);
reader.BaseStream.Seek(importTableOffset, SeekOrigin.Begin);
int descriptorCount = 0;
while (true)
{
descriptorCount++;
// Read the import descriptor
uint originalFirstThunk = reader.ReadUInt32();
uint timeDateStamp = reader.ReadUInt32();
uint forwarderChain = reader.ReadUInt32();
uint nameRva = reader.ReadUInt32();
uint firstThunk = reader.ReadUInt32();
// Check if we've reached the end of the import descriptors
if (originalFirstThunk == 0 && nameRva == 0 && firstThunk == 0)
{
break;
}
ImportDescriptor descriptor = new ImportDescriptor
{
OriginalFirstThunk = originalFirstThunk,
TimeDateStamp = timeDateStamp,
ForwarderChain = forwarderChain,
Name = nameRva,
FirstThunk = firstThunk,
DllName = "Unknown" // Default name in case we can't read it
};
// Try to read the DLL name
try
{
if (nameRva != 0)
{
uint nameOffset = RvaToOffset(nameRva);
reader.BaseStream.Seek(nameOffset, SeekOrigin.Begin);
// Read the null-terminated ASCII string
StringBuilder nameBuilder = new StringBuilder();
byte b;
while ((b = reader.ReadByte()) != 0)
{
nameBuilder.Append((char)b);
}
descriptor.DllName = nameBuilder.ToString();
}
}
catch (Exception)
{
// If we can't read the name, keep the default "Unknown"
}
// Parse the imported functions
ParseImportedFunctions(reader, descriptor);
descriptors.Add(descriptor);
// Return to the import table to read the next descriptor
reader.BaseStream.Seek(importTableOffset + (descriptorCount * 20), SeekOrigin.Begin);
}
}
catch (Exception ex)
{
Console.WriteLine($"Error parsing import descriptors: {ex.Message}");
// Return whatever descriptors we've managed to parse
}
return descriptors;
}
/// <summary>
/// Parses the imported functions for a given import descriptor
/// </summary>
private void ParseImportedFunctions(BinaryReader reader, ImportDescriptor descriptor)
{
try
{
// Use OriginalFirstThunk if available, otherwise use FirstThunk
uint thunkRva = descriptor.OriginalFirstThunk != 0 ? descriptor.OriginalFirstThunk : descriptor.FirstThunk;
if (thunkRva == 0)
{
return; // No functions to parse
}
uint thunkOffset = RvaToOffset(thunkRva);
int functionCount = 0;
while (true)
{
reader.BaseStream.Seek(thunkOffset + (functionCount * 4), SeekOrigin.Begin);
uint thunkData = reader.ReadUInt32();
if (thunkData == 0)
{
break; // End of the function list
}
ImportedFunction function = new ImportedFunction
{
ThunkRVA = thunkRva + (uint)(functionCount * 4)
};
// Check if imported by ordinal (high bit set)
if ((thunkData & 0x80000000) != 0)
{
function.IsOrdinal = true;
function.Ordinal = (ushort)(thunkData & 0xFFFF);
function.Name = $"Ordinal_{function.Ordinal}";
}
else
{
// Imported by name - the thunkData is an RVA to a hint/name structure
try
{
uint hintNameOffset = RvaToOffset(thunkData);
reader.BaseStream.Seek(hintNameOffset, SeekOrigin.Begin);
// Read the hint (2 bytes)
function.Hint = reader.ReadUInt16();
// Read the function name (null-terminated ASCII string)
StringBuilder nameBuilder = new StringBuilder();
byte b;
while ((b = reader.ReadByte()) != 0)
{
nameBuilder.Append((char)b);
}
function.Name = nameBuilder.ToString();
if (string.IsNullOrEmpty(function.Name))
{
function.Name = $"Function_at_{thunkData:X8}";
}
}
catch (Exception)
{
function.Name = $"Function_at_{thunkData:X8}";
}
}
descriptor.Functions.Add(function);
functionCount++;
}
}
catch (Exception ex)
{
Console.WriteLine($"Error parsing imported functions for {descriptor.DllName}: {ex.Message}");
}
}
/// <summary>
/// Parses the exported functions using the export directory information
/// </summary>
private void ParseExportedFunctions(BinaryReader reader)
{
if (ExportDirectory == null)
{
return;
}
// Read the array of function addresses (RVAs)
uint[] functionRVAs = new uint[ExportDirectory.NumberOfFunctions];
reader.BaseStream.Seek(RvaToOffset(ExportDirectory.AddressOfFunctions), SeekOrigin.Begin);
for (int i = 0; i < ExportDirectory.NumberOfFunctions; i++)
{
functionRVAs[i] = reader.ReadUInt32();
}
// Read the array of name RVAs
uint[] nameRVAs = new uint[ExportDirectory.NumberOfNames];
reader.BaseStream.Seek(RvaToOffset(ExportDirectory.AddressOfNames), SeekOrigin.Begin);
for (int i = 0; i < ExportDirectory.NumberOfNames; i++)
{
nameRVAs[i] = reader.ReadUInt32();
}
// Read the array of name ordinals
ushort[] nameOrdinals = new ushort[ExportDirectory.NumberOfNames];
reader.BaseStream.Seek(RvaToOffset(ExportDirectory.AddressOfNameOrdinals), SeekOrigin.Begin);
for (int i = 0; i < ExportDirectory.NumberOfNames; i++)
{
nameOrdinals[i] = reader.ReadUInt16();
}
// Create a dictionary to map ordinals to names
Dictionary<ushort, string> ordinalToName = new Dictionary<ushort, string>();
for (int i = 0; i < ExportDirectory.NumberOfNames; i++)
{
// Read the function name
reader.BaseStream.Seek(RvaToOffset(nameRVAs[i]), SeekOrigin.Begin);
List<byte> nameBytes = new List<byte>();
byte b;
while ((b = reader.ReadByte()) != 0)
{
nameBytes.Add(b);
}
string name = Encoding.ASCII.GetString(nameBytes.ToArray());
// Map the ordinal to the name
ordinalToName[nameOrdinals[i]] = name;
}
// Create the exported functions
for (ushort i = 0; i < ExportDirectory.NumberOfFunctions; i++)
{
uint functionRVA = functionRVAs[i];
if (functionRVA == 0)
{
continue; // Skip empty entries
}
ExportedFunction function = new ExportedFunction();
function.Ordinal = (ushort)(i + ExportDirectory.Base);
function.Address = functionRVA;
// Check if this function has a name
if (ordinalToName.TryGetValue(i, out string name))
{
function.Name = name;
}
else
{
function.Name = $"Ordinal_{function.Ordinal}";
}
// Check if this is a forwarder
uint exportDirStart = OptionalHeader.DataDirectories[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
uint exportDirEnd = exportDirStart + OptionalHeader.DataDirectories[IMAGE_DIRECTORY_ENTRY_EXPORT].Size;
if (functionRVA >= exportDirStart && functionRVA < exportDirEnd)
{
function.IsForwarder = true;
// Read the forwarder string
reader.BaseStream.Seek(RvaToOffset(functionRVA), SeekOrigin.Begin);
List<byte> forwarderBytes = new List<byte>();
byte b;
while ((b = reader.ReadByte()) != 0)
{
forwarderBytes.Add(b);
}
function.ForwarderName = Encoding.ASCII.GetString(forwarderBytes.ToArray());
}
ExportedFunctions.Add(function);
}
}
/// <summary>
/// Gets the raw data for a specific section
/// </summary>
/// <param name="sectionIndex">Index of the section</param>
/// <returns>Byte array containing the section data</returns>
public byte[] GetSectionData(int sectionIndex)
{
if (sectionIndex < 0 || sectionIndex >= SectionHeaders.Count)
{
throw new ArgumentOutOfRangeException(nameof(sectionIndex));
}
SectionHeader section = SectionHeaders[sectionIndex];
byte[] sectionData = new byte[section.SizeOfRawData];
Array.Copy(_fileData, section.PointerToRawData, sectionData, 0, section.SizeOfRawData);
return sectionData;
}
/// <summary>
/// Gets the raw data for a section by name
/// </summary>
/// <param name="sectionName">Name of the section</param>
/// <returns>Byte array containing the section data</returns>
public byte[] GetSectionData(string sectionName)
{
for (int i = 0; i < SectionHeaders.Count; i++)
{
if (SectionHeaders[i].Name == sectionName)
{
return GetSectionData(i);
}
}
throw new ArgumentException($"Section '{sectionName}' not found");
}
/// <summary>
/// Checks if a section contains code
/// </summary>
/// <param name="section">The section to check</param>
/// <returns>True if the section contains code, false otherwise</returns>
public bool IsSectionContainsCode(SectionHeader section)
{
return (section.Characteristics & IMAGE_SCN_CNT_CODE) != 0 ||
(section.Characteristics & IMAGE_SCN_MEM_EXECUTE) != 0;
}
/// <summary>
/// Gets all code sections
/// </summary>
/// <returns>List of section indices that contain code</returns>
public List<int> GetCodeSections()
{
List<int> codeSections = new List<int>();
for (int i = 0; i < SectionHeaders.Count; i++)
{
if (IsSectionContainsCode(SectionHeaders[i]))
{
codeSections.Add(i);
}
}
return codeSections;
}
/// <summary>
/// Converts a Relative Virtual Address (RVA) to a file offset
/// </summary>
/// <param name="rva">The RVA to convert</param>
/// <returns>The corresponding file offset</returns>
public uint RvaToOffset(uint rva)
{
if (rva == 0)
{
return 0;
}
foreach (var section in SectionHeaders)
{
// Check if the RVA is within this section
if (rva >= section.VirtualAddress && rva < section.VirtualAddress + section.VirtualSize)
{
// Calculate the offset within the section
uint offsetInSection = rva - section.VirtualAddress;
// Make sure we don't exceed the raw data size
if (offsetInSection < section.SizeOfRawData)
{
return section.PointerToRawData + offsetInSection;
}
}
}
// If the RVA is not within any section, it might be in the headers
if (rva < OptionalHeader.SizeOfHeaders)
{
return rva;
}
throw new ArgumentException($"RVA {rva:X8} is not within any section");
}
}
#region PE Format Structures
/// <summary>
/// DOS Header structure
/// </summary>
public class DOSHeader
{
public ushort e_magic; // Magic number ("MZ")
public ushort e_cblp; // Bytes on last page of file
public ushort e_cp; // Pages in file
public ushort e_crlc; // Relocations
public ushort e_cparhdr; // Size of header in paragraphs
public ushort e_minalloc; // Minimum extra paragraphs needed
public ushort e_maxalloc; // Maximum extra paragraphs needed
public ushort e_ss; // Initial (relative) SS value
public ushort e_sp; // Initial SP value
public ushort e_csum; // Checksum
public ushort e_ip; // Initial IP value
public ushort e_cs; // Initial (relative) CS value
public ushort e_lfarlc; // File address of relocation table
public ushort e_ovno; // Overlay number
public ushort[] e_res; // Reserved words
public ushort e_oemid; // OEM identifier
public ushort e_oeminfo; // OEM information
public ushort[] e_res2; // Reserved words
public uint e_lfanew; // File address of new exe header
}
/// <summary>
/// File Header structure
/// </summary>
public class FileHeader
{
public ushort Machine; // Target machine type
public ushort NumberOfSections; // Number of sections
public uint TimeDateStamp; // Time stamp
public uint PointerToSymbolTable; // File offset of symbol table
public uint NumberOfSymbols; // Number of symbols
public ushort SizeOfOptionalHeader; // Size of optional header
public ushort Characteristics; // Characteristics
}
/// <summary>
/// Optional Header structure
/// </summary>
public class OptionalHeader
{
// Standard fields
public ushort Magic; // Magic number (PE32 or PE32+)
public byte MajorLinkerVersion; // Major linker version
public byte MinorLinkerVersion; // Minor linker version
public uint SizeOfCode; // Size of code section
public uint SizeOfInitializedData; // Size of initialized data
public uint SizeOfUninitializedData; // Size of uninitialized data
public uint AddressOfEntryPoint; // Entry point RVA
public uint BaseOfCode; // Base of code section
public uint BaseOfData; // Base of data section (PE32 only)
// Windows-specific fields
public dynamic ImageBase; // Preferred image base (uint for PE32, ulong for PE32+)
public uint SectionAlignment; // Section alignment
public uint FileAlignment; // File alignment
public ushort MajorOperatingSystemVersion; // Major OS version
public ushort MinorOperatingSystemVersion; // Minor OS version
public ushort MajorImageVersion; // Major image version
public ushort MinorImageVersion; // Minor image version
public ushort MajorSubsystemVersion; // Major subsystem version
public ushort MinorSubsystemVersion; // Minor subsystem version
public uint Win32VersionValue; // Win32 version value
public uint SizeOfImage; // Size of image
public uint SizeOfHeaders; // Size of headers
public uint CheckSum; // Checksum
public ushort Subsystem; // Subsystem
public ushort DllCharacteristics; // DLL characteristics
public dynamic SizeOfStackReserve; // Size of stack reserve (uint for PE32, ulong for PE32+)
public dynamic SizeOfStackCommit; // Size of stack commit (uint for PE32, ulong for PE32+)
public dynamic SizeOfHeapReserve; // Size of heap reserve (uint for PE32, ulong for PE32+)
public dynamic SizeOfHeapCommit; // Size of heap commit (uint for PE32, ulong for PE32+)
public uint LoaderFlags; // Loader flags
public uint NumberOfRvaAndSizes; // Number of data directories
// Data directories
public DataDirectory[] DataDirectories; // Data directories
}
/// <summary>
/// Data Directory structure
/// </summary>
public class DataDirectory
{
public uint VirtualAddress; // RVA of the directory
public uint Size; // Size of the directory
}
/// <summary>
/// Section Header structure
/// </summary>
public class SectionHeader
{
public string Name; // Section name
public uint VirtualSize; // Virtual size
public uint VirtualAddress; // Virtual address (RVA)
public uint SizeOfRawData; // Size of raw data
public uint PointerToRawData; // File pointer to raw data
public uint PointerToRelocations; // File pointer to relocations
public uint PointerToLinenumbers; // File pointer to line numbers
public ushort NumberOfRelocations; // Number of relocations
public ushort NumberOfLinenumbers; // Number of line numbers
public uint Characteristics; // Characteristics
}
#endregion
#region Export and Import Structures
/// <summary>
/// Export Directory structure
/// </summary>
public class ExportDirectory
{
public uint Characteristics;
public uint TimeDateStamp;
public ushort MajorVersion;
public ushort MinorVersion;
public uint Name; // RVA to the DLL name
public string DllName; // Actual DLL name
public uint Base; // Ordinal base
public uint NumberOfFunctions; // Number of exported functions
public uint NumberOfNames; // Number of exported names
public uint AddressOfFunctions; // RVA to function addresses
public uint AddressOfNames; // RVA to function names
public uint AddressOfNameOrdinals; // RVA to ordinals
}
/// <summary>
/// Represents an exported function
/// </summary>
public class ExportedFunction
{
public string Name; // Function name
public uint Address; // Function RVA
public ushort Ordinal; // Function ordinal
public bool IsForwarder; // True if this is a forwarder
public string ForwarderName; // Name of the forwarded function (if IsForwarder is true)
}
/// <summary>
/// Import Descriptor structure
/// </summary>
public class ImportDescriptor
{
public uint OriginalFirstThunk; // RVA to Import Lookup Table
public uint TimeDateStamp;
public uint ForwarderChain;
public uint Name; // RVA to the DLL name
public string DllName; // Actual DLL name
public uint FirstThunk; // RVA to Import Address Table
public List<ImportedFunction> Functions; // List of imported functions
public ImportDescriptor()
{
Functions = new List<ImportedFunction>();
}
}
/// <summary>
/// Represents an imported function
/// </summary>
public class ImportedFunction
{
public bool IsOrdinal; // True if imported by ordinal
public ushort Ordinal; // Ordinal value (if IsOrdinal is true)
public string Name; // Function name (if IsOrdinal is false)
public ushort Hint; // Hint value (if IsOrdinal is false)
public uint ThunkRVA; // RVA in the Import Address Table
}
#endregion
}

View File

@ -1,128 +1,118 @@
using X86Disassembler.PE;
namespace X86Disassembler; namespace X86Disassembler;
using System;
using System.IO;
using System.Text;
using System.Collections.Generic;
using X86Disassembler.PE;
using X86Disassembler.X86;
internal class Program internal class Program
{ {
// Path to the DLL file to disassemble // Path to the DLL file to disassemble
private const string DllPath = @"C:\Program Files (x86)\Nikita\Iron Strategy\Terrain.dll"; // Example path, replace with your target DLL private const string DllPath = @"C:\Program Files (x86)\Nikita\Iron Strategy\Terrain.dll"; // Example path, replace with your target DLL
// Maximum number of instructions to display per section
private const int MaxInstructionsToDisplay = 50;
static void Main(string[] args) static void Main(string[] args)
{ {
Console.WriteLine("X86 Disassembler and Decompiler"); Console.WriteLine("X86 Disassembler and Decompiler");
Console.WriteLine("--------------------------------"); Console.WriteLine("--------------------------------");
Console.WriteLine($"Loading file: {DllPath}"); string filePath = DllPath;
// Load the DLL file Console.WriteLine($"Loading file: {filePath}");
byte[] binaryData = File.ReadAllBytes(DllPath);
Console.WriteLine($"Successfully loaded {DllPath}"); try
Console.WriteLine($"File size: {binaryData.Length} bytes"); {
// Load the file into memory
byte[] fileBytes = File.ReadAllBytes(filePath);
Console.WriteLine($"Successfully loaded {filePath}");
Console.WriteLine($"File size: {fileBytes.Length} bytes");
Console.WriteLine();
// Create the PE format parser Console.WriteLine("Parsing PE format...");
PEFormat peFile = new PEFormat(binaryData); Console.WriteLine();
// Parse the PE format // Parse the PE format
Console.WriteLine("\nParsing PE format..."); PEFormat peFormat = new PEFormat(fileBytes);
if (!peFile.Parse()) if (!peFormat.Parse())
{ {
Console.WriteLine("Failed to parse PE file. Exiting."); Console.WriteLine("Failed to parse PE file.");
return; return;
} }
// Display basic PE information // Display PE information
DisplayPEInfo(peFile); DisplayPEInfo(peFormat);
// Display exported functions // Disassemble code sections
DisplayExportedFunctions(peFile); DisassembleCodeSections(peFormat);
// Display imported functions Console.WriteLine();
DisplayImportedFunctions(peFile); Console.WriteLine("Press any key to exit...");
// Find code sections for disassembly
var codeSections = peFile.GetCodeSections();
Console.WriteLine($"\nFound {codeSections.Count} code section(s):");
foreach (int sectionIndex in codeSections)
{
var section = peFile.SectionHeaders[sectionIndex];
Console.WriteLine($" - {section.Name}: Size={section.SizeOfRawData} bytes, RVA=0x{section.VirtualAddress:X8}");
// Get the section data for disassembly
byte[] sectionData = peFile.GetSectionData(sectionIndex);
// TODO: Implement disassembling logic here
// This is where we would pass the section data to our disassembler
}
Console.WriteLine("\nPress any key to exit...");
Console.ReadKey(); Console.ReadKey();
} }
catch (Exception ex)
private static void DisplayPEInfo(PEFormat peFile)
{ {
Console.WriteLine("\nPE File Information:"); Console.WriteLine($"Error: {ex.Message}");
Console.WriteLine($"Architecture: {(peFile.Is64Bit ? "64-bit" : "32-bit")}"); Console.WriteLine(ex.StackTrace);
Console.WriteLine($"Entry Point: 0x{peFile.OptionalHeader.AddressOfEntryPoint:X8}"); }
Console.WriteLine($"Image Base: 0x{peFile.OptionalHeader.ImageBase:X}"); }
Console.WriteLine($"Number of Sections: {peFile.FileHeader.NumberOfSections}");
/// <summary>
/// Displays information about the PE file
/// </summary>
/// <param name="peFormat">The PE format object</param>
private static void DisplayPEInfo(PEFormat peFormat)
{
Console.WriteLine("PE File Information:");
Console.WriteLine($"Architecture: {(peFormat.OptionalHeader.Is64Bit() ? "64-bit" : "32-bit")}");
Console.WriteLine($"Entry Point: 0x{peFormat.OptionalHeader.AddressOfEntryPoint:X8}");
Console.WriteLine($"Image Base: 0x{peFormat.OptionalHeader.ImageBase:X8}");
Console.WriteLine($"Number of Sections: {peFormat.FileHeader.NumberOfSections}");
// Display section information
Console.WriteLine("\nSections:"); Console.WriteLine("\nSections:");
for (int i = 0; i < peFile.SectionHeaders.Count; i++) for (int i = 0; i < peFormat.SectionHeaders.Count; i++)
{ {
var section = peFile.SectionHeaders[i]; var section = peFormat.SectionHeaders[i];
string flags = ""; string flags = "";
if ((section.Characteristics & 0x00000020) != 0) flags += "Code "; // IMAGE_SCN_CNT_CODE // Use the section's methods to determine characteristics
if ((section.Characteristics & 0x20000000) != 0) flags += "Exec "; // IMAGE_SCN_MEM_EXECUTE if (section.ContainsCode()) flags += "Code ";
if ((section.Characteristics & 0x40000000) != 0) flags += "Read "; // IMAGE_SCN_MEM_READ if (section.IsExecutable()) flags += "Exec ";
if ((section.Characteristics & 0x80000000) != 0) flags += "Write"; // IMAGE_SCN_MEM_WRITE if (section.IsReadable()) flags += "Read ";
if (section.IsWritable()) flags += "Write";
Console.WriteLine($" {i}: {section.Name,-8} VA=0x{section.VirtualAddress:X8} Size={section.SizeOfRawData,-8} [{flags}]"); Console.WriteLine($" {i}: {section.Name,-8} VA=0x{section.VirtualAddress:X8} Size={section.VirtualSize,-8} [{flags}]");
}
} }
private static void DisplayExportedFunctions(PEFormat peFile) // Display exported functions
if (peFormat.ExportDirectory != null)
{ {
if (peFile.ExportDirectory == null)
{
Console.WriteLine("\nNo exported functions found.");
return;
}
Console.WriteLine("\nExported Functions:"); Console.WriteLine("\nExported Functions:");
Console.WriteLine($"DLL Name: {peFile.ExportDirectory.DllName}"); Console.WriteLine($"DLL Name: {peFormat.ExportDirectory.Name}");
Console.WriteLine($"Number of Functions: {peFile.ExportDirectory.NumberOfFunctions}"); Console.WriteLine($"Number of Functions: {peFormat.ExportDirectory.NumberOfFunctions}");
Console.WriteLine($"Number of Names: {peFile.ExportDirectory.NumberOfNames}"); Console.WriteLine($"Number of Names: {peFormat.ExportDirectory.NumberOfNames}");
// Display all exported functions for (int i = 0; i < peFormat.ExportedFunctions.Count; i++)
for (int i = 0; i < peFile.ExportedFunctions.Count; i++)
{ {
var function = peFile.ExportedFunctions[i]; var function = peFormat.ExportedFunctions[i];
Console.WriteLine($" {i}: {function.Name} (Ordinal={function.Ordinal}, RVA=0x{function.Address:X8})"); Console.WriteLine($" {i}: {function.Name} (Ordinal={function.Ordinal}, RVA=0x{function.Address:X8})");
} }
} }
private static void DisplayImportedFunctions(PEFormat peFile) // Display imported functions
if (peFormat.ImportDescriptors.Count > 0)
{ {
if (peFile.ImportDescriptors.Count == 0)
{
Console.WriteLine("\nNo imported functions found.");
return;
}
Console.WriteLine("\nImported Functions:"); Console.WriteLine("\nImported Functions:");
Console.WriteLine($"Number of Imported DLLs: {peFile.ImportDescriptors.Count}"); Console.WriteLine($"Number of Imported DLLs: {peFormat.ImportDescriptors.Count}");
// Display all imported DLLs and their functions for (int i = 0; i < peFormat.ImportDescriptors.Count; i++)
for (int i = 0; i < peFile.ImportDescriptors.Count; i++)
{ {
var descriptor = peFile.ImportDescriptors[i]; var descriptor = peFormat.ImportDescriptors[i];
Console.WriteLine($" DLL: {descriptor.DllName}"); Console.WriteLine($" DLL: {descriptor.Name}");
// Display all functions from this DLL
for (int j = 0; j < descriptor.Functions.Count; j++) for (int j = 0; j < descriptor.Functions.Count; j++)
{ {
var function = descriptor.Functions[j]; var function = descriptor.Functions[j];
@ -136,10 +126,83 @@ internal class Program
} }
} }
if (i < peFile.ImportDescriptors.Count - 1) if (i < peFormat.ImportDescriptors.Count - 1)
{ {
Console.WriteLine(); // Add a blank line between DLLs for better readability Console.WriteLine(); // Add a blank line between DLLs for better readability
} }
} }
} }
} }
/// <summary>
/// Disassembles the code sections of the PE file
/// </summary>
/// <param name="peFormat">The PE format object</param>
private static void DisassembleCodeSections(PEFormat peFormat)
{
// Find code sections
var codeSections = peFormat.SectionHeaders.FindAll(s => s.ContainsCode());
Console.WriteLine($"\nFound {codeSections.Count} code section(s):");
foreach (var section in codeSections)
{
Console.WriteLine($" - {section.Name}: Size={section.VirtualSize} bytes, RVA=0x{section.VirtualAddress:X8}");
}
Console.WriteLine();
// Disassemble each code section
for (int i = 0; i < peFormat.SectionHeaders.Count; i++)
{
var section = peFormat.SectionHeaders[i];
// Skip non-code sections
if (!section.ContainsCode())
continue;
Console.WriteLine($"Disassembling section {section.Name} at RVA 0x{section.VirtualAddress:X8}:");
// Get section data using the section index
byte[] sectionData = peFormat.GetSectionData(i);
// Create a disassembler for this section
ulong baseAddress = peFormat.OptionalHeader.ImageBase + section.VirtualAddress;
Disassembler disassembler = new Disassembler(sectionData, baseAddress);
// Disassemble and display instructions
int count = 0;
int maxInstructions = MaxInstructionsToDisplay; // Use the constant
while (count < maxInstructions)
{
Instruction? instruction = disassembler.DisassembleNext();
if (instruction == null)
{
break;
}
// Format the instruction bytes
StringBuilder bytesStr = new StringBuilder();
foreach (byte b in instruction.Bytes)
{
bytesStr.Append($"{b:X2} ");
}
// Format the instruction
// Calculate the RVA by subtracting the image base
ulong rva = instruction.Address - peFormat.OptionalHeader.ImageBase;
string addressStr = $"{rva:X8}";
string bytesDisplay = bytesStr.ToString().PadRight(20); // Pad to 20 characters
string operandsStr = string.IsNullOrEmpty(instruction.Operands) ? "" : $" {instruction.Operands}";
Console.WriteLine($" {addressStr} {bytesDisplay} {instruction.Mnemonic}{operandsStr}");
count++;
}
if (sectionData.Length > count * 10) // If we've only shown a small portion
{
Console.WriteLine($" ... ({sectionData.Length - (count * 10)} more bytes not shown)");
}
}
}
}

View File

@ -0,0 +1,86 @@
using System.Text;
namespace X86Disassembler.X86;
/// <summary>
/// Core x86 instruction disassembler
/// </summary>
public class Disassembler
{
// Buffer containing the code to disassemble
private readonly byte[] _codeBuffer;
// Base address for the code (RVA)
private readonly ulong _baseAddress;
// Current position in the code buffer
private int _position;
// Instruction decoder
private readonly InstructionDecoder _decoder;
/// <summary>
/// Initializes a new instance of the Disassembler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to disassemble</param>
/// <param name="baseAddress">The base address (RVA) of the code</param>
public Disassembler(byte[] codeBuffer, ulong baseAddress)
{
_codeBuffer = codeBuffer;
_baseAddress = baseAddress;
_position = 0;
_decoder = new InstructionDecoder(codeBuffer);
}
/// <summary>
/// Disassembles the next instruction in the code buffer
/// </summary>
/// <returns>The disassembled instruction, or null if the end of the buffer is reached</returns>
public Instruction? DisassembleNext()
{
if (_position >= _codeBuffer.Length)
{
return null; // End of buffer reached
}
// Create a new instruction
Instruction instruction = new Instruction
{
Address = _baseAddress + (uint)_position
};
// Decode the instruction
int bytesRead = _decoder.DecodeAt(_position, instruction);
if (bytesRead == 0)
{
return null; // Failed to decode instruction
}
// Update position
_position += bytesRead;
return instruction;
}
/// <summary>
/// Disassembles all instructions in the code buffer
/// </summary>
/// <returns>A list of disassembled instructions</returns>
public List<Instruction> DisassembleAll()
{
List<Instruction> instructions = new List<Instruction>();
// Reset position
_position = 0;
// Disassemble all instructions
Instruction? instruction;
while ((instruction = DisassembleNext()) != null)
{
instructions.Add(instruction);
}
return instructions;
}
}

View File

@ -0,0 +1,50 @@
namespace X86Disassembler.X86;
/// <summary>
/// Represents a decoded x86 instruction
/// </summary>
public class Instruction
{
/// <summary>
/// The address of the instruction in memory
/// </summary>
public ulong Address { get; set; }
/// <summary>
/// The raw bytes of the instruction
/// </summary>
public byte[] Bytes { get; set; } = Array.Empty<byte>();
/// <summary>
/// The mnemonic of the instruction (e.g., "mov", "add", "jmp")
/// </summary>
public string Mnemonic { get; set; } = string.Empty;
/// <summary>
/// The operands of the instruction as a formatted string
/// </summary>
public string Operands { get; set; } = string.Empty;
/// <summary>
/// The length of the instruction in bytes
/// </summary>
public int Length => Bytes.Length;
/// <summary>
/// Returns a string representation of the instruction
/// </summary>
/// <returns>A formatted string representing the instruction</returns>
public override string ToString()
{
return $"{Address:X8} {BytesToString()} {Mnemonic} {Operands}".Trim();
}
/// <summary>
/// Converts the instruction bytes to a formatted hex string
/// </summary>
/// <returns>A formatted hex string of the instruction bytes</returns>
private string BytesToString()
{
return string.Join(" ", Bytes.Select(b => b.ToString("X2")));
}
}

View File

@ -0,0 +1,504 @@
namespace X86Disassembler.X86;
/// <summary>
/// Decoder for x86 instructions
/// </summary>
public class InstructionDecoder
{
// Instruction prefixes
private const byte PREFIX_LOCK = 0xF0;
private const byte PREFIX_REPNE = 0xF2;
private const byte PREFIX_REP = 0xF3;
private const byte PREFIX_CS = 0x2E;
private const byte PREFIX_SS = 0x36;
private const byte PREFIX_DS = 0x3E;
private const byte PREFIX_ES = 0x26;
private const byte PREFIX_FS = 0x64;
private const byte PREFIX_GS = 0x65;
private const byte PREFIX_OPERAND_SIZE = 0x66;
private const byte PREFIX_ADDRESS_SIZE = 0x67;
// Common opcodes
private const byte OPCODE_INT3 = 0xCC;
private const byte OPCODE_NOP = 0x90;
private const byte OPCODE_RET = 0xC3;
private const byte OPCODE_CALL_NEAR_RELATIVE = 0xE8;
private const byte OPCODE_JMP_NEAR_RELATIVE = 0xE9;
private const byte OPCODE_JMP_SHORT_RELATIVE = 0xEB;
// Opcode groups
private const byte OPCODE_GROUP_1_BYTE = 0x80;
private const byte OPCODE_GROUP_1_WORD_DWORD = 0x81;
private const byte OPCODE_GROUP_1_BYTE_IMM8 = 0x83;
// ModR/M byte masks
private const byte MODRM_MOD_MASK = 0xC0; // 11000000b
private const byte MODRM_REG_MASK = 0x38; // 00111000b
private const byte MODRM_RM_MASK = 0x07; // 00000111b
// SIB byte masks
private const byte SIB_SCALE_MASK = 0xC0; // 11000000b
private const byte SIB_INDEX_MASK = 0x38; // 00111000b
private const byte SIB_BASE_MASK = 0x07; // 00000111b
// Register names
private static readonly string[] RegisterNames8 = { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh" };
private static readonly string[] RegisterNames16 = { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di" };
private static readonly string[] RegisterNames32 = { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi" };
private static readonly string[] SegmentRegisterNames = { "es", "cs", "ss", "ds", "fs", "gs" };
// Condition codes for conditional jumps
private static readonly string[] ConditionCodes = {
"o", "no", "b", "ae", "e", "ne", "be", "a",
"s", "ns", "p", "np", "l", "ge", "le", "g"
};
// One-byte opcode map
private static readonly string[] OneByteOpcodes = new string[256];
// Buffer containing the code to decode
private readonly byte[] _codeBuffer;
// Current position in the code buffer
private int _position;
// Length of the buffer
private readonly int _length;
/// <summary>
/// Static constructor to initialize the opcode maps
/// </summary>
static InstructionDecoder()
{
InitializeOpcodeMaps();
}
/// <summary>
/// Initializes the opcode maps
/// </summary>
private static void InitializeOpcodeMaps()
{
// Initialize all entries to "??" (unknown)
for (int i = 0; i < 256; i++)
{
OneByteOpcodes[i] = "??";
}
// Data transfer instructions
for (int i = 0x88; i <= 0x8B; i++)
{
OneByteOpcodes[i] = "mov";
}
OneByteOpcodes[0xA0] = "mov"; // MOV AL, moffs8
OneByteOpcodes[0xA1] = "mov"; // MOV EAX, moffs32
OneByteOpcodes[0xA2] = "mov"; // MOV moffs8, AL
OneByteOpcodes[0xA3] = "mov"; // MOV moffs32, EAX
for (int i = 0xB0; i <= 0xB7; i++)
{
OneByteOpcodes[i] = "mov"; // MOV r8, imm8
}
for (int i = 0xB8; i <= 0xBF; i++)
{
OneByteOpcodes[i] = "mov"; // MOV r32, imm32
}
OneByteOpcodes[0xC6] = "mov"; // MOV r/m8, imm8
OneByteOpcodes[0xC7] = "mov"; // MOV r/m32, imm32
// Push/Pop instructions
for (int i = 0x50; i <= 0x57; i++)
{
OneByteOpcodes[i] = "push"; // PUSH r32
}
for (int i = 0x58; i <= 0x5F; i++)
{
OneByteOpcodes[i] = "pop"; // POP r32
}
OneByteOpcodes[0x68] = "push"; // PUSH imm32
OneByteOpcodes[0x6A] = "push"; // PUSH imm8
OneByteOpcodes[0x8F] = "pop"; // POP r/m32
OneByteOpcodes[0x9C] = "pushf"; // PUSHF
OneByteOpcodes[0x9D] = "popf"; // POPF
// Arithmetic instructions
for (int i = 0x00; i <= 0x05; i++)
{
OneByteOpcodes[i] = "add";
}
for (int i = 0x28; i <= 0x2D; i++)
{
OneByteOpcodes[i] = "sub";
}
for (int i = 0x30; i <= 0x35; i++)
{
OneByteOpcodes[i] = "xor";
}
for (int i = 0x38; i <= 0x3D; i++)
{
OneByteOpcodes[i] = "cmp";
}
OneByteOpcodes[0x40] = "inc"; // INC eax
OneByteOpcodes[0x41] = "inc"; // INC ecx
OneByteOpcodes[0x42] = "inc"; // INC edx
OneByteOpcodes[0x43] = "inc"; // INC ebx
OneByteOpcodes[0x44] = "inc"; // INC esp
OneByteOpcodes[0x45] = "inc"; // INC ebp
OneByteOpcodes[0x46] = "inc"; // INC esi
OneByteOpcodes[0x47] = "inc"; // INC edi
OneByteOpcodes[0x48] = "dec"; // DEC eax
OneByteOpcodes[0x49] = "dec"; // DEC ecx
OneByteOpcodes[0x4A] = "dec"; // DEC edx
OneByteOpcodes[0x4B] = "dec"; // DEC ebx
OneByteOpcodes[0x4C] = "dec"; // DEC esp
OneByteOpcodes[0x4D] = "dec"; // DEC ebp
OneByteOpcodes[0x4E] = "dec"; // DEC esi
OneByteOpcodes[0x4F] = "dec"; // DEC edi
// Logical instructions
for (int i = 0x20; i <= 0x25; i++)
{
OneByteOpcodes[i] = "and";
}
for (int i = 0x08; i <= 0x0D; i++)
{
OneByteOpcodes[i] = "or";
}
OneByteOpcodes[0xF7] = "not"; // Group 3 - NOT, NEG, MUL, IMUL, DIV, IDIV
// Shift and rotate instructions
OneByteOpcodes[0xD0] = "rol"; // Group 2 - ROL, ROR, RCL, RCR, SHL/SAL, SHR, SAR
OneByteOpcodes[0xD1] = "rol"; // Group 2 - ROL, ROR, RCL, RCR, SHL/SAL, SHR, SAR
OneByteOpcodes[0xD2] = "rol"; // Group 2 - ROL, ROR, RCL, RCR, SHL/SAL, SHR, SAR
OneByteOpcodes[0xD3] = "rol"; // Group 2 - ROL, ROR, RCL, RCR, SHL/SAL, SHR, SAR
// Control flow instructions
OneByteOpcodes[0xC3] = "ret";
OneByteOpcodes[0xC2] = "ret";
OneByteOpcodes[0xCA] = "retf";
OneByteOpcodes[0xCB] = "retf";
OneByteOpcodes[0xCC] = "int3";
OneByteOpcodes[0xCD] = "int";
OneByteOpcodes[0xCE] = "into";
OneByteOpcodes[0xCF] = "iret";
OneByteOpcodes[0xE8] = "call";
OneByteOpcodes[0xE9] = "jmp";
OneByteOpcodes[0xEB] = "jmp";
OneByteOpcodes[0xFF] = "call"; // Group 5 - CALL, JMP, PUSH
// Conditional jumps
for (int i = 0x70; i <= 0x7F; i++)
{
OneByteOpcodes[i] = "j" + ConditionCodes[i - 0x70];
}
// String instructions
OneByteOpcodes[0xA4] = "movsb";
OneByteOpcodes[0xA5] = "movsd";
OneByteOpcodes[0xA6] = "cmpsb";
OneByteOpcodes[0xA7] = "cmpsd";
OneByteOpcodes[0xAA] = "stosb";
OneByteOpcodes[0xAB] = "stosd";
OneByteOpcodes[0xAC] = "lodsb";
OneByteOpcodes[0xAD] = "lodsd";
OneByteOpcodes[0xAE] = "scasb";
OneByteOpcodes[0xAF] = "scasd";
// Misc instructions
OneByteOpcodes[0x90] = "nop";
OneByteOpcodes[0x91] = "xchg"; // XCHG eax, ecx
OneByteOpcodes[0x92] = "xchg"; // XCHG eax, edx
OneByteOpcodes[0x93] = "xchg"; // XCHG eax, ebx
OneByteOpcodes[0x94] = "xchg"; // XCHG eax, esp
OneByteOpcodes[0x95] = "xchg"; // XCHG eax, ebp
OneByteOpcodes[0x96] = "xchg"; // XCHG eax, esi
OneByteOpcodes[0x97] = "xchg"; // XCHG eax, edi
OneByteOpcodes[0x98] = "cwde";
OneByteOpcodes[0x99] = "cdq";
OneByteOpcodes[0xF4] = "hlt";
OneByteOpcodes[0xF5] = "cmc";
OneByteOpcodes[0xF8] = "clc";
OneByteOpcodes[0xF9] = "stc";
OneByteOpcodes[0xFA] = "cli";
OneByteOpcodes[0xFB] = "sti";
OneByteOpcodes[0xFC] = "cld";
OneByteOpcodes[0xFD] = "std";
}
/// <summary>
/// Initializes a new instance of the InstructionDecoder class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
public InstructionDecoder(byte[] codeBuffer)
{
_codeBuffer = codeBuffer;
_position = 0;
_length = codeBuffer.Length;
}
/// <summary>
/// Decodes an instruction at the specified position in the code buffer
/// </summary>
/// <param name="position">The position in the code buffer</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>The number of bytes read</returns>
public int DecodeAt(int position, Instruction instruction)
{
_position = position;
return Decode(instruction);
}
/// <summary>
/// Decodes an instruction at the current position in the code buffer
/// </summary>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>The number of bytes read</returns>
public int Decode(Instruction instruction)
{
// Store the starting position
int startPosition = _position;
// Check if we've reached the end of the buffer
if (_position >= _length)
{
return 0;
}
// Handle instruction prefixes
bool hasPrefix = true;
bool operandSizePrefix = false;
bool addressSizePrefix = false;
string segmentOverride = string.Empty;
while (hasPrefix && _position < _length)
{
byte prefix = _codeBuffer[_position];
switch (prefix)
{
case PREFIX_LOCK:
case PREFIX_REPNE:
case PREFIX_REP:
_position++;
break;
case PREFIX_CS:
segmentOverride = "cs";
_position++;
break;
case PREFIX_SS:
segmentOverride = "ss";
_position++;
break;
case PREFIX_DS:
segmentOverride = "ds";
_position++;
break;
case PREFIX_ES:
segmentOverride = "es";
_position++;
break;
case PREFIX_FS:
segmentOverride = "fs";
_position++;
break;
case PREFIX_GS:
segmentOverride = "gs";
_position++;
break;
case PREFIX_OPERAND_SIZE:
operandSizePrefix = true;
_position++;
break;
case PREFIX_ADDRESS_SIZE:
addressSizePrefix = true;
_position++;
break;
default:
hasPrefix = false;
break;
}
}
// We've reached the end of the buffer after processing prefixes
if (_position >= _length)
{
return _position - startPosition;
}
// Read the opcode
byte opcode = _codeBuffer[_position++];
// Get the mnemonic from the opcode map
string mnemonic = OneByteOpcodes[opcode];
// Handle specific opcodes
string operands = string.Empty;
switch (opcode)
{
case OPCODE_INT3:
// No operands for INT3
break;
case OPCODE_NOP:
// No operands for NOP
break;
case OPCODE_RET:
// No operands for RET
break;
case OPCODE_CALL_NEAR_RELATIVE:
if (_position + 4 <= _length)
{
// Read 32-bit relative offset
int offset = BitConverter.ToInt32(_codeBuffer, _position);
_position += 4;
// Calculate target address (relative to next instruction)
uint targetAddress = (uint)(_position + offset);
operands = $"0x{targetAddress:X8}";
}
break;
case OPCODE_JMP_NEAR_RELATIVE:
if (_position + 4 <= _length)
{
// Read 32-bit relative offset
int offset = BitConverter.ToInt32(_codeBuffer, _position);
_position += 4;
// Calculate target address (relative to next instruction)
uint targetAddress = (uint)(_position + offset);
operands = $"0x{targetAddress:X8}";
}
break;
case OPCODE_JMP_SHORT_RELATIVE:
if (_position < _length)
{
// Read 8-bit relative offset
sbyte offset = (sbyte)_codeBuffer[_position++];
// Calculate target address (relative to next instruction)
uint targetAddress = (uint)(_position + offset);
operands = $"0x{targetAddress:X8}";
}
break;
default:
// Handle register-based instructions
if (opcode >= 0x40 && opcode <= 0x47) // INC r32
{
int reg = opcode - 0x40;
operands = RegisterNames32[reg];
}
else if (opcode >= 0x48 && opcode <= 0x4F) // DEC r32
{
int reg = opcode - 0x48;
operands = RegisterNames32[reg];
}
else if (opcode >= 0x50 && opcode <= 0x57) // PUSH r32
{
int reg = opcode - 0x50;
operands = RegisterNames32[reg];
}
else if (opcode >= 0x58 && opcode <= 0x5F) // POP r32
{
int reg = opcode - 0x58;
operands = RegisterNames32[reg];
}
else if (opcode >= 0x91 && opcode <= 0x97) // XCHG eax, r32
{
int reg = opcode - 0x90;
operands = $"eax, {RegisterNames32[reg]}";
}
else if (opcode >= 0xB0 && opcode <= 0xB7) // MOV r8, imm8
{
if (_position < _length)
{
int reg = opcode - 0xB0;
byte imm8 = _codeBuffer[_position++];
operands = $"{RegisterNames8[reg]}, 0x{imm8:X2}";
}
}
else if (opcode >= 0xB8 && opcode <= 0xBF) // MOV r32, imm32
{
if (_position + 4 <= _length)
{
int reg = opcode - 0xB8;
uint imm32 = BitConverter.ToUInt32(_codeBuffer, _position);
_position += 4;
operands = $"{RegisterNames32[reg]}, 0x{imm32:X8}";
}
}
else if (opcode >= 0x70 && opcode <= 0x7F) // Conditional jumps (short)
{
if (_position < _length)
{
sbyte offset = (sbyte)_codeBuffer[_position++];
uint targetAddress = (uint)(_position + offset);
operands = $"0x{targetAddress:X8}";
}
}
else if (opcode == 0x68) // PUSH imm32
{
if (_position + 4 <= _length)
{
uint imm32 = BitConverter.ToUInt32(_codeBuffer, _position);
_position += 4;
operands = $"0x{imm32:X8}";
}
}
else if (opcode == 0x6A) // PUSH imm8
{
if (_position < _length)
{
byte imm8 = _codeBuffer[_position++];
operands = $"0x{imm8:X2}";
}
}
else if (opcode == 0xCD) // INT imm8
{
if (_position < _length)
{
byte imm8 = _codeBuffer[_position++];
operands = $"0x{imm8:X2}";
}
}
else if (opcode == 0xE3) // JECXZ rel8
{
if (_position < _length)
{
sbyte offset = (sbyte)_codeBuffer[_position++];
uint targetAddress = (uint)(_position + offset);
operands = $"0x{targetAddress:X8}";
}
}
else
{
// For other opcodes, we'll just show the raw bytes for now
// In a full implementation, we would decode the ModR/M byte, SIB byte, etc.
}
break;
}
// Set the instruction properties
instruction.Mnemonic = mnemonic;
instruction.Operands = operands;
// Copy the instruction bytes
int bytesRead = _position - startPosition;
instruction.Bytes = new byte[bytesRead];
Array.Copy(_codeBuffer, startPosition, instruction.Bytes, 0, bytesRead);
return bytesRead;
}
}

View File

@ -0,0 +1,72 @@
namespace X86Disassembler.X86;
/// <summary>
/// Represents the different types of x86 instructions
/// </summary>
public enum InstructionType
{
/// <summary>
/// Unknown or unrecognized instruction
/// </summary>
Unknown,
/// <summary>
/// Data transfer instructions (e.g., MOV, PUSH, POP, XCHG)
/// </summary>
DataTransfer,
/// <summary>
/// Arithmetic instructions (e.g., ADD, SUB, MUL, DIV)
/// </summary>
Arithmetic,
/// <summary>
/// Logical instructions (e.g., AND, OR, XOR, NOT)
/// </summary>
Logical,
/// <summary>
/// Shift and rotate instructions (e.g., SHL, SHR, ROL, ROR)
/// </summary>
ShiftRotate,
/// <summary>
/// Control flow instructions (e.g., JMP, CALL, RET)
/// </summary>
ControlFlow,
/// <summary>
/// Conditional jump instructions (e.g., JE, JNE, JG, JL)
/// </summary>
ConditionalJump,
/// <summary>
/// String instructions (e.g., MOVS, CMPS, SCAS)
/// </summary>
String,
/// <summary>
/// I/O instructions (e.g., IN, OUT)
/// </summary>
IO,
/// <summary>
/// Flag control instructions (e.g., STC, CLC, CMC)
/// </summary>
FlagControl,
/// <summary>
/// Processor control instructions (e.g., HLT, WAIT)
/// </summary>
ProcessorControl,
/// <summary>
/// Floating-point instructions (e.g., FADD, FSUB, FMUL)
/// </summary>
FloatingPoint,
/// <summary>
/// SIMD instructions (e.g., MMX, SSE, AVX)
/// </summary>
SIMD
}