0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-19 03:41:18 +03:00

Refactored ModRMDecoder class into smaller, more focused components. Created RegisterMapper and SIBDecoder classes to improve maintainability.

This commit is contained in:
bird_egop 2025-04-16 19:11:36 +03:00
parent 9445fb225f
commit a91d6af8fc
3 changed files with 225 additions and 135 deletions

View File

@ -10,6 +10,9 @@ public class ModRMDecoder
// The instruction decoder that owns this ModRM decoder
private readonly InstructionDecoder _decoder;
// The SIB decoder for handling SIB bytes
private readonly SIBDecoder _sibDecoder;
/// <summary>
/// Initializes a new instance of the ModRMDecoder class
/// </summary>
@ -17,49 +20,10 @@ public class ModRMDecoder
public ModRMDecoder(InstructionDecoder decoder)
{
_decoder = decoder;
_sibDecoder = new SIBDecoder(decoder);
}
/// <summary>
/// Maps the register index from the ModR/M byte to the RegisterIndex enum value
/// </summary>
/// <param name="modRMRegIndex">The register index from the ModR/M byte (0-7)</param>
/// <returns>The corresponding RegisterIndex enum value</returns>
private RegisterIndex MapModRMToRegisterIndex(int modRMRegIndex)
{
// The mapping from ModR/M register index to RegisterIndex enum is:
// 0 -> A (EAX)
// 1 -> C (ECX)
// 2 -> D (EDX)
// 3 -> B (EBX)
// 4 -> Sp (ESP)
// 5 -> Bp (EBP)
// 6 -> Si (ESI)
// 7 -> Di (EDI)
return modRMRegIndex switch
{
0 => RegisterIndex.A, // EAX
1 => RegisterIndex.C, // ECX
2 => RegisterIndex.D, // EDX
3 => RegisterIndex.B, // EBX
4 => RegisterIndex.Sp, // ESP
5 => RegisterIndex.Bp, // EBP
6 => RegisterIndex.Si, // ESI
7 => RegisterIndex.Di, // EDI
_ => RegisterIndex.A // Default to EAX
};
}
/// <summary>
/// Maps the register index from the ModR/M byte to the RegisterIndex8 enum value
/// </summary>
/// <param name="modRMRegIndex">The register index from the ModR/M byte (0-7)</param>
/// <returns>The corresponding RegisterIndex8 enum value</returns>
private RegisterIndex8 MapModRMToRegisterIndex8(int modRMRegIndex)
{
// The mapping from ModR/M register index to RegisterIndex8 enum is direct:
// 0 -> AL, 1 -> CL, 2 -> DL, 3 -> BL, 4 -> AH, 5 -> CH, 6 -> DH, 7 -> BH
return (RegisterIndex8)modRMRegIndex;
}
// These methods have been moved to the RegisterMapper class
/// <summary>
/// Decodes a ModR/M byte to get the operand
@ -315,8 +279,8 @@ public class ModRMDecoder
byte rmIndex = (byte)(modRM & Constants.RM_MASK);
// Map the ModR/M register indices to RegisterIndex enum values
RegisterIndex reg = MapModRMToRegisterIndex(regIndex);
RegisterIndex rm = MapModRMToRegisterIndex(rmIndex);
RegisterIndex reg = RegisterMapper.MapModRMToRegisterIndex(regIndex);
RegisterIndex rm = RegisterMapper.MapModRMToRegisterIndex(rmIndex);
// Create the operand based on the mod and rm fields
Operand operand = DecodeModRM(mod, rm, is64Bit);
@ -343,8 +307,8 @@ public class ModRMDecoder
byte rmIndex = (byte)(modRM & Constants.RM_MASK);
// Map the ModR/M register indices to RegisterIndex8 enum values
RegisterIndex8 reg = MapModRMToRegisterIndex8(regIndex);
RegisterIndex8 rm = MapModRMToRegisterIndex8(rmIndex);
RegisterIndex8 reg = RegisterMapper.MapModRMToRegisterIndex8(regIndex);
RegisterIndex8 rm = RegisterMapper.MapModRMToRegisterIndex8(rmIndex);
// Create the operand based on the mod and rm fields
Operand operand;
@ -359,7 +323,7 @@ public class ModRMDecoder
// For memory operands, we need to map the RegisterIndex8 to RegisterIndex for base registers
// The rmIndex is the raw value from the ModR/M byte, not the mapped RegisterIndex8
// This is important because we need to check if it's 4 (ESP) for SIB byte
RegisterIndex rmRegIndex = MapModRMToRegisterIndex(rmIndex);
RegisterIndex rmRegIndex = RegisterMapper.MapModRMToRegisterIndex(rmIndex);
// Use the DecodeModRM8 method to get an 8-bit memory operand
operand = DecodeModRM8(mod, rmRegIndex);
@ -377,87 +341,8 @@ public class ModRMDecoder
/// <returns>The decoded SIB operand</returns>
private Operand DecodeSIB(byte sib, uint displacement, int operandSize)
{
// Extract fields from SIB byte
byte scale = (byte)((sib & Constants.SIB_SCALE_MASK) >> 6);
int indexIndex = (sib & Constants.SIB_INDEX_MASK) >> 3;
int baseIndex = sib & Constants.SIB_BASE_MASK;
// Map the SIB register indices to RegisterIndex enum values
RegisterIndex index = MapModRMToRegisterIndex(indexIndex);
RegisterIndex @base = MapModRMToRegisterIndex(baseIndex);
// Special case: ESP/SP (4) in index field means no index register
if (index == RegisterIndex.Sp)
{
// Special case: EBP/BP (5) in base field with no displacement means disp32 only
if (@base == RegisterIndex.Bp && displacement == 0)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
// When both index is ESP (no index) and base is EBP with disp32,
// this is a direct memory reference [disp32]
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateDirectMemoryOperand(0, operandSize);
}
// When index is ESP (no index), we just have a base register with optional displacement
if (displacement == 0)
{
return OperandFactory.CreateBaseRegisterMemoryOperand(@base, operandSize);
}
return OperandFactory.CreateDisplacementMemoryOperand(@base, (int)displacement, operandSize);
}
// Special case: EBP/BP (5) in base field with no displacement means disp32 only
if (@base == RegisterIndex.Bp && displacement == 0)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
int scaleValue = 1 << scale; // 1, 2, 4, or 8
// If we have a direct memory reference with a specific displacement,
// use a direct memory operand instead of a scaled index memory operand
if (disp32 > 0 && index == RegisterIndex.Sp)
{
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Create a scaled index memory operand with displacement but no base register
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
scaleValue,
null,
(int)disp32,
operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
1 << scale,
null,
0,
operandSize);
}
// Normal case with base and index registers
int scaleFactor = 1 << scale; // 1, 2, 4, or 8
// Create a scaled index memory operand
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
scaleFactor,
@base,
(int)displacement,
operandSize);
// Delegate to the SIBDecoder
return _sibDecoder.DecodeSIB(sib, displacement, operandSize);
}
/// <summary>
@ -468,13 +353,7 @@ public class ModRMDecoder
/// <returns>The register name</returns>
public static string GetRegisterName(RegisterIndex regIndex, int size)
{
return size switch
{
16 => Constants.RegisterNames16[(int)regIndex],
32 => Constants.RegisterNames32[(int)regIndex],
64 => Constants.RegisterNames32[(int)regIndex], // For now, reuse 32-bit names for 64-bit
_ => "unknown"
};
return RegisterMapper.GetRegisterName(regIndex, size);
}
/// <summary>
@ -484,6 +363,6 @@ public class ModRMDecoder
/// <returns>The 8-bit register name</returns>
public static string GetRegisterName(RegisterIndex8 regIndex8)
{
return regIndex8.ToString().ToLower();
return RegisterMapper.GetRegisterName(regIndex8);
}
}

View File

@ -0,0 +1,100 @@
namespace X86Disassembler.X86;
using Operands;
/// <summary>
/// Handles mapping between register indices and register enums
/// </summary>
public static class RegisterMapper
{
/// <summary>
/// Maps the register index from the ModR/M byte to the RegisterIndex enum value
/// </summary>
/// <param name="modRMRegIndex">The register index from the ModR/M byte (0-7)</param>
/// <returns>The corresponding RegisterIndex enum value</returns>
public static RegisterIndex MapModRMToRegisterIndex(int modRMRegIndex)
{
// The mapping from ModR/M register index to RegisterIndex enum is:
// 0 -> A (EAX)
// 1 -> C (ECX)
// 2 -> D (EDX)
// 3 -> B (EBX)
// 4 -> Sp (ESP)
// 5 -> Bp (EBP)
// 6 -> Si (ESI)
// 7 -> Di (EDI)
return modRMRegIndex switch
{
0 => RegisterIndex.A, // EAX
1 => RegisterIndex.C, // ECX
2 => RegisterIndex.D, // EDX
3 => RegisterIndex.B, // EBX
4 => RegisterIndex.Sp, // ESP
5 => RegisterIndex.Bp, // EBP
6 => RegisterIndex.Si, // ESI
7 => RegisterIndex.Di, // EDI
_ => RegisterIndex.A // Default to EAX
};
}
/// <summary>
/// Maps the register index from the ModR/M byte to the RegisterIndex8 enum value
/// </summary>
/// <param name="modRMRegIndex">The register index from the ModR/M byte (0-7)</param>
/// <returns>The corresponding RegisterIndex8 enum value</returns>
public static RegisterIndex8 MapModRMToRegisterIndex8(int modRMRegIndex)
{
// The mapping from ModR/M register index to RegisterIndex8 enum is direct:
// 0 -> AL, 1 -> CL, 2 -> DL, 3 -> BL, 4 -> AH, 5 -> CH, 6 -> DH, 7 -> BH
return (RegisterIndex8)modRMRegIndex;
}
/// <summary>
/// Maps a RegisterIndex8 enum value to the corresponding RegisterIndex enum value for base registers
/// </summary>
/// <param name="regIndex8">The RegisterIndex8 enum value</param>
/// <returns>The corresponding RegisterIndex enum value</returns>
public static RegisterIndex MapRegister8ToBaseRegister(RegisterIndex8 regIndex8)
{
// Map 8-bit register indices to their corresponding 32-bit register indices
return regIndex8 switch
{
RegisterIndex8.AL => RegisterIndex.A,
RegisterIndex8.CL => RegisterIndex.C,
RegisterIndex8.DL => RegisterIndex.D,
RegisterIndex8.BL => RegisterIndex.B,
RegisterIndex8.AH => RegisterIndex.A,
RegisterIndex8.CH => RegisterIndex.C,
RegisterIndex8.DH => RegisterIndex.D,
RegisterIndex8.BH => RegisterIndex.B,
_ => RegisterIndex.A // Default to EAX
};
}
/// <summary>
/// Gets the register name based on the register index and size
/// </summary>
/// <param name="regIndex">The register index as RegisterIndex enum</param>
/// <param name="size">The register size (16, 32, or 64 bits)</param>
/// <returns>The register name</returns>
public static string GetRegisterName(RegisterIndex regIndex, int size)
{
return size switch
{
16 => Constants.RegisterNames16[(int)regIndex],
32 => Constants.RegisterNames32[(int)regIndex],
64 => Constants.RegisterNames32[(int)regIndex], // For now, reuse 32-bit names for 64-bit
_ => "unknown"
};
}
/// <summary>
/// Gets the 8-bit register name based on the RegisterIndex8 enum value
/// </summary>
/// <param name="regIndex8">The register index as RegisterIndex8 enum</param>
/// <returns>The 8-bit register name</returns>
public static string GetRegisterName(RegisterIndex8 regIndex8)
{
return regIndex8.ToString().ToLower();
}
}

View File

@ -0,0 +1,111 @@
namespace X86Disassembler.X86;
using Operands;
/// <summary>
/// Handles decoding of SIB (Scale-Index-Base) bytes in x86 instructions
/// </summary>
public class SIBDecoder
{
private readonly InstructionDecoder _decoder;
/// <summary>
/// Initializes a new instance of the SIBDecoder class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this SIB decoder</param>
public SIBDecoder(InstructionDecoder decoder)
{
_decoder = decoder;
}
/// <summary>
/// Decodes a SIB byte
/// </summary>
/// <param name="sib">The SIB byte</param>
/// <param name="displacement">The displacement value</param>
/// <param name="operandSize">The size of the operand in bits (8, 16, 32, or 64)</param>
/// <returns>The decoded SIB operand</returns>
public Operand DecodeSIB(byte sib, uint displacement, int operandSize)
{
// Extract fields from SIB byte
byte scale = (byte)((sib & Constants.SIB_SCALE_MASK) >> 6);
int indexIndex = (sib & Constants.SIB_INDEX_MASK) >> 3;
int baseIndex = sib & Constants.SIB_BASE_MASK;
// Map the SIB register indices to RegisterIndex enum values
RegisterIndex index = RegisterMapper.MapModRMToRegisterIndex(indexIndex);
RegisterIndex @base = RegisterMapper.MapModRMToRegisterIndex(baseIndex);
// Special case: ESP/SP (4) in index field means no index register
if (index == RegisterIndex.Sp)
{
// Special case: EBP/BP (5) in base field with no displacement means disp32 only
if (@base == RegisterIndex.Bp && displacement == 0)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
// When both index is ESP (no index) and base is EBP with disp32,
// this is a direct memory reference [disp32]
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateDirectMemoryOperand(0, operandSize);
}
// When index is ESP (no index), we just have a base register with optional displacement
if (displacement == 0)
{
return OperandFactory.CreateBaseRegisterMemoryOperand(@base, operandSize);
}
return OperandFactory.CreateDisplacementMemoryOperand(@base, (int)displacement, operandSize);
}
// Special case: EBP/BP (5) in base field with no displacement means disp32 only
if (@base == RegisterIndex.Bp && displacement == 0)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
int scaleValue = 1 << scale; // 1, 2, 4, or 8
// If we have a direct memory reference with a specific displacement,
// use a direct memory operand instead of a scaled index memory operand
if (disp32 > 0 && index == RegisterIndex.Sp)
{
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Create a scaled index memory operand with displacement but no base register
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
scaleValue,
null,
(int)disp32,
operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
1 << scale,
null,
0,
operandSize);
}
// Normal case with base and index registers
int scaleFactor = 1 << scale; // 1, 2, 4, or 8
// Create a scaled index memory operand
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
scaleFactor,
@base,
(int)displacement,
operandSize);
}
}