0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-06-20 08:18:36 +03:00

Refactored floating point instruction handlers for better organization and maintainability. Split generic handlers into specialized classes for DD and DF opcodes.

This commit is contained in:
bird_egop
2025-04-18 00:22:02 +03:00
parent ec56576116
commit d216c29315
62 changed files with 4985 additions and 376 deletions

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FADD ST(i), ST(0) instruction (DC C0-C7)
/// </summary>
public class FaddRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FaddRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FaddRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FADD ST(i), ST(0) is DC C0-C7
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 0
return reg == 0 && mod == 3;
}
/// <summary>
/// Decodes a FADD ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fadd;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FADDP ST(i), ST(0) instruction (DE C0-C7)
/// </summary>
public class FaddpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FaddpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FaddpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FADDP ST(i), ST(0) is DE C0-C7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 0
return reg == 0 && mod == 3;
}
/// <summary>
/// Decodes a FADDP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Faddp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIV ST(i), ST(0) instruction (DC F0-F7)
/// </summary>
public class FdivRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIV ST(i), ST(0) is DC F0-F7
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 6
return reg == 6 && mod == 3;
}
/// <summary>
/// Decodes a FDIV ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdiv;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIVP ST(i), ST(0) instruction (DE F0-F7)
/// </summary>
public class FdivpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIVP ST(i), ST(0) is DE F0-F7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 6
return reg == 6 && mod == 3;
}
/// <summary>
/// Decodes a FDIVP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdivp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIVR ST(i), ST(0) instruction (DC F8-FF)
/// </summary>
public class FdivrRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivrRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivrRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIVR ST(i), ST(0) is DC F8-FF
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 7
return reg == 7 && mod == 3;
}
/// <summary>
/// Decodes a FDIVR ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdivr;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIVRP ST(i), ST(0) instruction (DE F8-FF)
/// </summary>
public class FdivrpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivrpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivrpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIVRP ST(i), ST(0) is DE F8-FF
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 7
return reg == 7 && mod == 3;
}
/// <summary>
/// Decodes a FDIVRP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdivrp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIADD int16 instruction (DE /0)
/// </summary>
public class FiaddInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FiaddInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FiaddInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIADD int16 is DE /0
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 0
return reg == 0 && mod != 3;
}
/// <summary>
/// Decodes a FIADD int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fiadd;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIDIV int16 instruction (DE /6)
/// </summary>
public class FidivInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FidivInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FidivInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIDIV int16 is DE /6
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 6
return reg == 6 && mod != 3;
}
/// <summary>
/// Decodes a FIDIV int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fidiv;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIDIVR int16 instruction (DE /7)
/// </summary>
public class FidivrInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FidivrInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FidivrInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIDIVR int16 is DE /7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 7
return reg == 7 && mod != 3;
}
/// <summary>
/// Decodes a FIDIVR int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fidivr;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIMUL int16 instruction (DE /1)
/// </summary>
public class FimulInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FimulInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FimulInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIMUL int16 is DE /1
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 1
return reg == 1 && mod != 3;
}
/// <summary>
/// Decodes a FIMUL int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fimul;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISUB int16 instruction (DE /4)
/// </summary>
public class FisubInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FisubInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FisubInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISUB int16 is DE /4
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 4
return reg == 4 && mod != 3;
}
/// <summary>
/// Decodes a FISUB int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fisub;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISUBR int16 instruction (DE /5)
/// </summary>
public class FisubrInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FisubrInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FisubrInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISUBR int16 is DE /5
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 5
return reg == 5 && mod != 3;
}
/// <summary>
/// Decodes a FISUBR int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fisubr;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FMUL ST(i), ST(0) instruction (DC C8-CF)
/// </summary>
public class FmulRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FmulRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FmulRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FMUL ST(i), ST(0) is DC C8-CF
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 1
return reg == 1 && mod == 3;
}
/// <summary>
/// Decodes a FMUL ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fmul;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FMULP ST(i), ST(0) instruction (DE C8-CF)
/// </summary>
public class FmulpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FmulpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FmulpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FMULP ST(i), ST(0) is DE C8-CF
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 1
return reg == 1 && mod == 3;
}
/// <summary>
/// Decodes a FMULP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fmulp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUB ST(i), ST(0) instruction (DC E0-E7)
/// </summary>
public class FsubRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUB ST(i), ST(0) is DC E0-E7
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 4
return reg == 4 && mod == 3;
}
/// <summary>
/// Decodes a FSUB ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsub;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUBP ST(i), ST(0) instruction (DE E0-E7)
/// </summary>
public class FsubpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUBP ST(i), ST(0) is DE E0-E7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 4
return reg == 4 && mod == 3;
}
/// <summary>
/// Decodes a FSUBP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsubp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUBR ST(i), ST(0) instruction (DC E8-EF)
/// </summary>
public class FsubrRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubrRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubrRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUBR ST(i), ST(0) is DC E8-EF
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 5
return reg == 5 && mod == 3;
}
/// <summary>
/// Decodes a FSUBR ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsubr;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUBRP ST(i), ST(0) instruction (DE E8-EF)
/// </summary>
public class FsubrpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubrpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubrpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUBRP ST(i), ST(0) is DE E8-EF
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 5
return reg == 5 && mod == 3;
}
/// <summary>
/// Decodes a FSUBRP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsubrp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}