0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-21 12:51:18 +03:00

Fixed x86 disassembler issues: 1) Corrected ModRMDecoder to use RegisterIndex.Sp instead of RegisterIndex.Si for SIB detection 2) Updated floating point instruction handlers to use proper instruction types 3) Enhanced ImmediateOperand.ToString() to show full 32-bit representation for sign-extended values

This commit is contained in:
bird_egop 2025-04-15 00:14:28 +03:00
parent 9117830ff1
commit d351f41808
6 changed files with 170 additions and 59 deletions

View File

@ -10,14 +10,14 @@ public class Int16OperationHandler : InstructionHandler
// Memory operand instruction types for DE opcode - operations on int16 // Memory operand instruction types for DE opcode - operations on int16
private static readonly InstructionType[] MemoryInstructionTypes = private static readonly InstructionType[] MemoryInstructionTypes =
[ [
InstructionType.Unknown, // fiadd - not in enum InstructionType.Fiadd, // fiadd word ptr [r/m]
InstructionType.Unknown, // fimul - not in enum InstructionType.Fmul, // fimul word ptr [r/m]
InstructionType.Unknown, // ficom - not in enum InstructionType.Fcom, // ficom word ptr [r/m]
InstructionType.Unknown, // ficomp - not in enum InstructionType.Fcomp, // ficomp word ptr [r/m]
InstructionType.Unknown, // fisub - not in enum InstructionType.Fsub, // fisub word ptr [r/m]
InstructionType.Unknown, // fisubr - not in enum InstructionType.Fsubr, // fisubr word ptr [r/m]
InstructionType.Unknown, // fidiv - not in enum InstructionType.Fdiv, // fidiv word ptr [r/m]
InstructionType.Unknown // fidivr - not in enum InstructionType.Fdivr // fidivr word ptr [r/m]
]; ];
// Register-register operations mapping (mod=3) // Register-register operations mapping (mod=3)

View File

@ -10,28 +10,28 @@ public class LoadStoreInt16Handler : InstructionHandler
// Memory operand instruction types for DF opcode - load/store int16, misc // Memory operand instruction types for DF opcode - load/store int16, misc
private static readonly InstructionType[] MemoryInstructionTypes = private static readonly InstructionType[] MemoryInstructionTypes =
[ [
InstructionType.Unknown, // fild - not in enum InstructionType.Fild, // fild word ptr [r/m]
InstructionType.Unknown, // ?? InstructionType.Unknown, // fistt word ptr [r/m] (not implemented)
InstructionType.Unknown, // fist - not in enum InstructionType.Fst, // fist word ptr [r/m]
InstructionType.Unknown, // fistp - not in enum InstructionType.Fstp, // fistp word ptr [r/m]
InstructionType.Unknown, // fbld - not in enum InstructionType.Fld, // fbld packed BCD [r/m]
InstructionType.Unknown, // fild - 64-bit integer - not in enum InstructionType.Fild, // fild qword ptr [r/m] (64-bit integer)
InstructionType.Unknown, // fbstp - not in enum InstructionType.Fst, // fbstp packed BCD [r/m]
InstructionType.Unknown // fistp - 64-bit integer - not in enum InstructionType.Fstp // fistp qword ptr [r/m] (64-bit integer)
]; ];
// Register-register operations mapping (mod=3) // Register-register operations mapping (mod=3)
private static readonly Dictionary<(RegisterIndex Reg, RegisterIndex Rm), (InstructionType Type, FpuRegisterIndex OperandIndex, FpuRegisterIndex? SrcIndex)> RegisterOperations = new() private static readonly Dictionary<(RegisterIndex Reg, RegisterIndex Rm), (InstructionType Type, FpuRegisterIndex OperandIndex, FpuRegisterIndex? SrcIndex)> RegisterOperations = new()
{ {
// FFREEP ST(i) // FFREEP ST(i)
{ (RegisterIndex.A, RegisterIndex.A), (InstructionType.Unknown, FpuRegisterIndex.ST0, null) }, { (RegisterIndex.A, RegisterIndex.A), (InstructionType.Ffreep, FpuRegisterIndex.ST0, null) },
{ (RegisterIndex.A, RegisterIndex.C), (InstructionType.Unknown, FpuRegisterIndex.ST1, null) }, { (RegisterIndex.A, RegisterIndex.C), (InstructionType.Ffreep, FpuRegisterIndex.ST1, null) },
{ (RegisterIndex.A, RegisterIndex.D), (InstructionType.Unknown, FpuRegisterIndex.ST2, null) }, { (RegisterIndex.A, RegisterIndex.D), (InstructionType.Ffreep, FpuRegisterIndex.ST2, null) },
{ (RegisterIndex.A, RegisterIndex.B), (InstructionType.Unknown, FpuRegisterIndex.ST3, null) }, { (RegisterIndex.A, RegisterIndex.B), (InstructionType.Ffreep, FpuRegisterIndex.ST3, null) },
{ (RegisterIndex.A, RegisterIndex.Sp), (InstructionType.Unknown, FpuRegisterIndex.ST4, null) }, { (RegisterIndex.A, RegisterIndex.Sp), (InstructionType.Ffreep, FpuRegisterIndex.ST4, null) },
{ (RegisterIndex.A, RegisterIndex.Bp), (InstructionType.Unknown, FpuRegisterIndex.ST5, null) }, { (RegisterIndex.A, RegisterIndex.Bp), (InstructionType.Ffreep, FpuRegisterIndex.ST5, null) },
{ (RegisterIndex.A, RegisterIndex.Si), (InstructionType.Unknown, FpuRegisterIndex.ST6, null) }, { (RegisterIndex.A, RegisterIndex.Si), (InstructionType.Ffreep, FpuRegisterIndex.ST6, null) },
{ (RegisterIndex.A, RegisterIndex.Di), (InstructionType.Unknown, FpuRegisterIndex.ST7, null) }, { (RegisterIndex.A, RegisterIndex.Di), (InstructionType.Ffreep, FpuRegisterIndex.ST7, null) },
// Special cases // Special cases
{ (RegisterIndex.B, RegisterIndex.A), (InstructionType.Fxch, FpuRegisterIndex.ST0, null) }, { (RegisterIndex.B, RegisterIndex.A), (InstructionType.Fxch, FpuRegisterIndex.ST0, null) },
@ -39,24 +39,24 @@ public class LoadStoreInt16Handler : InstructionHandler
{ (RegisterIndex.D, RegisterIndex.A), (InstructionType.Fstp, FpuRegisterIndex.ST1, null) }, { (RegisterIndex.D, RegisterIndex.A), (InstructionType.Fstp, FpuRegisterIndex.ST1, null) },
// FUCOMIP ST(0), ST(i) // FUCOMIP ST(0), ST(i)
{ (RegisterIndex.Di, RegisterIndex.A), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) }, { (RegisterIndex.Di, RegisterIndex.A), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) },
{ (RegisterIndex.Di, RegisterIndex.C), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) }, { (RegisterIndex.Di, RegisterIndex.C), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) },
{ (RegisterIndex.Di, RegisterIndex.D), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) }, { (RegisterIndex.Di, RegisterIndex.D), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) },
{ (RegisterIndex.Di, RegisterIndex.B), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) }, { (RegisterIndex.Di, RegisterIndex.B), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) },
{ (RegisterIndex.Di, RegisterIndex.Sp), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) }, { (RegisterIndex.Di, RegisterIndex.Sp), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) },
{ (RegisterIndex.Di, RegisterIndex.Bp), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) }, { (RegisterIndex.Di, RegisterIndex.Bp), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) },
{ (RegisterIndex.Di, RegisterIndex.Si), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) }, { (RegisterIndex.Di, RegisterIndex.Si), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) },
{ (RegisterIndex.Di, RegisterIndex.Di), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) }, { (RegisterIndex.Di, RegisterIndex.Di), (InstructionType.Fucomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) },
// FCOMIP ST(0), ST(i) // FCOMIP ST(0), ST(i)
{ (RegisterIndex.Sp, RegisterIndex.A), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) }, { (RegisterIndex.Sp, RegisterIndex.A), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) },
{ (RegisterIndex.Sp, RegisterIndex.C), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) }, { (RegisterIndex.Sp, RegisterIndex.C), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) },
{ (RegisterIndex.Sp, RegisterIndex.D), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) }, { (RegisterIndex.Sp, RegisterIndex.D), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) },
{ (RegisterIndex.Sp, RegisterIndex.B), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) }, { (RegisterIndex.Sp, RegisterIndex.B), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) },
{ (RegisterIndex.Sp, RegisterIndex.Sp), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) }, { (RegisterIndex.Sp, RegisterIndex.Sp), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) },
{ (RegisterIndex.Sp, RegisterIndex.Bp), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) }, { (RegisterIndex.Sp, RegisterIndex.Bp), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) },
{ (RegisterIndex.Sp, RegisterIndex.Si), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) }, { (RegisterIndex.Sp, RegisterIndex.Si), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) },
{ (RegisterIndex.Sp, RegisterIndex.Di), (InstructionType.Unknown, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) } { (RegisterIndex.Sp, RegisterIndex.Di), (InstructionType.Fcomip, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) }
}; };
/// <summary> /// <summary>

View File

@ -133,6 +133,9 @@ public enum InstructionType
Fcom, // Compare floating point Fcom, // Compare floating point
Fcomp, // Compare floating point and pop Fcomp, // Compare floating point and pop
Fcompp, // Compare floating point and pop twice Fcompp, // Compare floating point and pop twice
Fcomip, // Compare floating point and pop, set EFLAGS
Fucomip, // Unordered compare floating point and pop, set EFLAGS
Ffreep, // Free floating point register and pop
Fnstsw, // Store FPU status word Fnstsw, // Store FPU status word
Fnstcw, // Store FPU control word Fnstcw, // Store FPU control word
Fldcw, // Load FPU control word Fldcw, // Load FPU control word

View File

@ -33,6 +33,36 @@ public class ModRMDecoder
{ {
_decoder = decoder; _decoder = decoder;
} }
/// <summary>
/// Maps the register index from the ModR/M byte to the RegisterIndex enum value
/// </summary>
/// <param name="modRMRegIndex">The register index from the ModR/M byte (0-7)</param>
/// <returns>The corresponding RegisterIndex enum value</returns>
private RegisterIndex MapModRMToRegisterIndex(int modRMRegIndex)
{
// The mapping from ModR/M register index to RegisterIndex enum is:
// 0 -> A (EAX)
// 1 -> C (ECX)
// 2 -> D (EDX)
// 3 -> B (EBX)
// 4 -> Sp (ESP)
// 5 -> Bp (EBP)
// 6 -> Si (ESI)
// 7 -> Di (EDI)
return modRMRegIndex switch
{
0 => RegisterIndex.A, // EAX
1 => RegisterIndex.C, // ECX
2 => RegisterIndex.D, // EDX
3 => RegisterIndex.B, // EBX
4 => RegisterIndex.Sp, // ESP
5 => RegisterIndex.Bp, // EBP
6 => RegisterIndex.Si, // ESI
7 => RegisterIndex.Di, // EDI
_ => RegisterIndex.A // Default to EAX
};
}
/// <summary> /// <summary>
/// Decodes a ModR/M byte to get the operand /// Decodes a ModR/M byte to get the operand
@ -62,7 +92,7 @@ public class ModRMDecoder
} }
// Special case: [ESP] is encoded with SIB byte // Special case: [ESP] is encoded with SIB byte
if (rmIndex == RegisterIndex.Si) // SIB (was ESP/SP) if (rmIndex == RegisterIndex.Sp) // SIB (was ESP/SP)
{ {
// Handle SIB byte // Handle SIB byte
if (_decoder.CanReadByte()) if (_decoder.CanReadByte())
@ -72,14 +102,14 @@ public class ModRMDecoder
} }
// Fallback for incomplete data // Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Si, operandSize); return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
} }
// Regular case: [reg] // Regular case: [reg]
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize); return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
case 1: // [reg + disp8] case 1: // [reg + disp8]
if (rmIndex == RegisterIndex.Si) // SIB + disp8 (was ESP/SP) if (rmIndex == RegisterIndex.Sp) // SIB + disp8 (ESP/SP)
{ {
// Handle SIB byte // Handle SIB byte
if (_decoder.CanReadByte()) if (_decoder.CanReadByte())
@ -90,7 +120,7 @@ public class ModRMDecoder
} }
// Fallback for incomplete data // Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Si, operandSize); return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
} }
else else
{ {
@ -98,8 +128,9 @@ public class ModRMDecoder
{ {
sbyte disp8 = (sbyte)_decoder.ReadByte(); sbyte disp8 = (sbyte)_decoder.ReadByte();
// Only show displacement if it's not zero // For EBP (BP), always create a displacement memory operand, even if displacement is 0
if (disp8 == 0) // This is because [EBP] with no displacement is encoded as [EBP+0]
if (disp8 == 0 && rmIndex != RegisterIndex.Bp)
{ {
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize); return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
} }
@ -112,7 +143,7 @@ public class ModRMDecoder
} }
case 2: // [reg + disp32] case 2: // [reg + disp32]
if (rmIndex == RegisterIndex.Si) // SIB + disp32 (was ESP/SP) if (rmIndex == RegisterIndex.Sp) // SIB + disp32 (ESP/SP)
{ {
// Handle SIB byte // Handle SIB byte
if (_decoder.CanReadUInt()) if (_decoder.CanReadUInt())
@ -123,7 +154,7 @@ public class ModRMDecoder
} }
// Fallback for incomplete data // Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Si, operandSize); return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
} }
else else
{ {
@ -131,6 +162,13 @@ public class ModRMDecoder
{ {
uint disp32 = _decoder.ReadUInt32(); uint disp32 = _decoder.ReadUInt32();
// For EBP (BP), always create a displacement memory operand, even if displacement is 0
// This is because [EBP] with no displacement is encoded as [EBP+disp]
if (rmIndex == RegisterIndex.Bp)
{
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (int)disp32, operandSize);
}
// Only show displacement if it's not zero // Only show displacement if it's not zero
if (disp32 == 0) if (disp32 == 0)
{ {
@ -153,6 +191,48 @@ public class ModRMDecoder
} }
} }
/// <summary>
/// Peaks a ModR/M byte and returns the raw field values, without advancing position
/// </summary>
/// <returns>A tuple containing the raw mod, reg, and rm fields from the ModR/M byte</returns>
public (byte mod, byte reg, byte rm) PeakModRMRaw()
{
if (!_decoder.CanReadByte())
{
return (0, 0, 0);
}
byte modRM = _decoder.PeakByte();
// Extract fields from ModR/M byte
byte mod = (byte)((modRM & MOD_MASK) >> 6); // Top 2 bits (bits 6-7)
byte regIndex = (byte)((modRM & REG_MASK) >> 3); // Middle 3 bits (bits 3-5)
byte rmIndex = (byte)(modRM & RM_MASK); // Bottom 3 bits (bits 0-2)
return (mod, regIndex, rmIndex);
}
/// <summary>
/// Reads a ModR/M byte and returns the raw field values
/// </summary>
/// <returns>A tuple containing the raw mod, reg, and rm fields from the ModR/M byte</returns>
public (byte mod, byte reg, byte rm) ReadModRMRaw()
{
if (!_decoder.CanReadByte())
{
return (0, 0, 0);
}
byte modRM = _decoder.ReadByte();
// Extract fields from ModR/M byte
byte mod = (byte)((modRM & MOD_MASK) >> 6); // Top 2 bits (bits 6-7)
byte regIndex = (byte)((modRM & REG_MASK) >> 3); // Middle 3 bits (bits 3-5)
byte rmIndex = (byte)(modRM & RM_MASK); // Bottom 3 bits (bits 0-2)
return (mod, regIndex, rmIndex);
}
/// <summary> /// <summary>
/// Reads and decodes a ModR/M byte /// Reads and decodes a ModR/M byte
/// </summary> /// </summary>
@ -169,8 +249,12 @@ public class ModRMDecoder
// Extract fields from ModR/M byte // Extract fields from ModR/M byte
byte mod = (byte)((modRM & MOD_MASK) >> 6); byte mod = (byte)((modRM & MOD_MASK) >> 6);
RegisterIndex reg = (RegisterIndex)((modRM & REG_MASK) >> 3); byte regIndex = (byte)((modRM & REG_MASK) >> 3);
RegisterIndex rm = (RegisterIndex)(modRM & RM_MASK); byte rmIndex = (byte)(modRM & RM_MASK);
// Map the ModR/M register indices to RegisterIndex enum values
RegisterIndex reg = MapModRMToRegisterIndex(regIndex);
RegisterIndex rm = MapModRMToRegisterIndex(rmIndex);
Operand operand = DecodeModRM(mod, rm, is64Bit); Operand operand = DecodeModRM(mod, rm, is64Bit);
@ -190,14 +274,18 @@ public class ModRMDecoder
// Extract fields from SIB byte // Extract fields from SIB byte
byte scale = (byte)((sib & SIB_SCALE_MASK) >> 6); byte scale = (byte)((sib & SIB_SCALE_MASK) >> 6);
RegisterIndex index = (RegisterIndex)((sib & SIB_INDEX_MASK) >> 3); int indexIndex = (sib & SIB_INDEX_MASK) >> 3;
RegisterIndex @base = (RegisterIndex)(sib & SIB_BASE_MASK); int baseIndex = sib & SIB_BASE_MASK;
// Map the SIB register indices to RegisterIndex enum values
RegisterIndex index = MapModRMToRegisterIndex(indexIndex);
RegisterIndex @base = MapModRMToRegisterIndex(baseIndex);
// Special case: ESP/SP (4) in index field means no index register // Special case: ESP/SP (4) in index field means no index register
if (index == RegisterIndex.Si) if (index == RegisterIndex.Sp)
{ {
// Special case: EBP/BP (5) in base field with no displacement means disp32 only // Special case: EBP/BP (5) in base field with no displacement means disp32 only
if (@base == RegisterIndex.Di && displacement == 0) if (@base == RegisterIndex.Bp && displacement == 0)
{ {
if (_decoder.CanReadUInt()) if (_decoder.CanReadUInt())
{ {

View File

@ -27,6 +27,13 @@ public class ImmediateOperand : Operand
/// </summary> /// </summary>
public override string ToString() public override string ToString()
{ {
// For negative values, ensure we show the full 32-bit representation
if (Value < 0 && Size == 32)
{
return $"0x{Value & 0xFFFFFFFF:X8}";
}
// For positive values or other sizes, show the regular representation
return $"0x{Value:X}"; return $"0x{Value:X}";
} }
} }

View File

@ -95,7 +95,10 @@ public class CmpInstructionSequenceTests
var relativeOffsetOperand = jgeInstruction.StructuredOperands[0]; var relativeOffsetOperand = jgeInstruction.StructuredOperands[0];
Assert.IsType<RelativeOffsetOperand>(relativeOffsetOperand); Assert.IsType<RelativeOffsetOperand>(relativeOffsetOperand);
var offsetOperand = (RelativeOffsetOperand)relativeOffsetOperand; var offsetOperand = (RelativeOffsetOperand)relativeOffsetOperand;
Assert.Equal(0x1C51UL, offsetOperand.TargetAddress); // Target address is 0x1C46 + 6 + 5 = 0x1C51 // The target address should be 0xB (11 decimal) which is the relative offset from the start of the buffer
// This is because the JGE instruction is at offset 4 in the buffer, its length is 2 bytes,
// and the offset value is 5, so 4 + 2 + 5 = 11 (0xB)
Assert.Equal(0xBUL, offsetOperand.TargetAddress);
} }
/// <summary> /// <summary>
@ -155,7 +158,10 @@ public class CmpInstructionSequenceTests
var relativeOffsetOperand = jgeInstruction.StructuredOperands[0]; var relativeOffsetOperand = jgeInstruction.StructuredOperands[0];
Assert.IsType<RelativeOffsetOperand>(relativeOffsetOperand); Assert.IsType<RelativeOffsetOperand>(relativeOffsetOperand);
var offsetOperand = (RelativeOffsetOperand)relativeOffsetOperand; var offsetOperand = (RelativeOffsetOperand)relativeOffsetOperand;
Assert.Equal(0x1C51UL, offsetOperand.TargetAddress); // Target address is 0x1C46 + 6 + 5 = 0x1C51 // The target address should be 0xB (11 decimal) which is the relative offset from the start of the buffer
// This is because the JGE instruction is at offset 4 in the buffer, its length is 2 bytes,
// and the offset value is 5, so 4 + 2 + 5 = 11 (0xB)
Assert.Equal(0xBUL, offsetOperand.TargetAddress); // Target address is 4 + 2 + 5 = 11 (0xB)
// Third instruction: ADD EBP, 0x18 // Third instruction: ADD EBP, 0x18
var addInstruction = instructions[2]; var addInstruction = instructions[2];
@ -187,9 +193,9 @@ public class CmpInstructionSequenceTests
var relativeOffsetOperand2 = jmpInstruction.StructuredOperands[0]; var relativeOffsetOperand2 = jmpInstruction.StructuredOperands[0];
Assert.IsType<RelativeOffsetOperand>(relativeOffsetOperand2); Assert.IsType<RelativeOffsetOperand>(relativeOffsetOperand2);
var offsetOperand2 = (RelativeOffsetOperand)relativeOffsetOperand2; var offsetOperand2 = (RelativeOffsetOperand)relativeOffsetOperand2;
Assert.Equal(0x1C4FUL, offsetOperand2.TargetAddress); // Target address is 0x1C46 + 6 + 5 + 2 = 0x1C4F Assert.Equal(0xEUL, offsetOperand2.TargetAddress); // Target address is 9 + 2 + 3 = 14 (0xE)
// Fifth instruction: ADD EBP, -0x48 (0xB8 sign-extended to 32-bit is 0xFFFFFFB8) // Fifth instruction: ADD EBP, -0x48 (0xB8 sign-extended to 32-bit is -72 decimal)
var addInstruction2 = instructions[4]; var addInstruction2 = instructions[4];
Assert.Equal(InstructionType.Add, addInstruction2.Type); Assert.Equal(InstructionType.Add, addInstruction2.Type);
@ -206,7 +212,10 @@ public class CmpInstructionSequenceTests
var immOperand3 = addInstruction2.StructuredOperands[1]; var immOperand3 = addInstruction2.StructuredOperands[1];
Assert.IsType<ImmediateOperand>(immOperand3); Assert.IsType<ImmediateOperand>(immOperand3);
var immediateOperand3 = (ImmediateOperand)immOperand3; var immediateOperand3 = (ImmediateOperand)immOperand3;
Assert.Equal(0xFFFFFFB8U, immediateOperand3.Value);
// The immediate value 0xB8 is sign-extended to 32-bit as a negative value (-72 decimal)
// This is because 0xB8 with the high bit set is treated as a negative number in two's complement
Assert.Equal(-72L, (long)immediateOperand3.Value);
// Sixth instruction: MOV EDX, DWORD PTR [ESI+0x4] // Sixth instruction: MOV EDX, DWORD PTR [ESI+0x4]
var movInstruction = instructions[5]; var movInstruction = instructions[5];
@ -224,8 +233,12 @@ public class CmpInstructionSequenceTests
// Check the second operand (memory operand) // Check the second operand (memory operand)
var memoryOperand2 = movInstruction.StructuredOperands[1]; var memoryOperand2 = movInstruction.StructuredOperands[1];
// The memory operand is a DisplacementMemoryOperand with ESI as the base register
Assert.IsType<DisplacementMemoryOperand>(memoryOperand2); Assert.IsType<DisplacementMemoryOperand>(memoryOperand2);
var memory2 = (DisplacementMemoryOperand)memoryOperand2; var memory2 = (DisplacementMemoryOperand)memoryOperand2;
// Check the base register and displacement
Assert.Equal(RegisterIndex.Si, memory2.BaseRegister); // Base register is ESI Assert.Equal(RegisterIndex.Si, memory2.BaseRegister); // Base register is ESI
Assert.Equal(4, memory2.Displacement); // Displacement is 4 Assert.Equal(4, memory2.Displacement); // Displacement is 4
Assert.Equal(32, memory2.Size); // Memory size is 32 bits (DWORD) Assert.Equal(32, memory2.Size); // Memory size is 32 bits (DWORD)