0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-06-19 07:59:47 +03:00

Fixed several instruction handling issues: 1) Added proper handling for zero displacements in memory operands, 2) Fixed large unsigned displacement values display, 3) Added CmpEaxImmHandler for CMP EAX, imm32 instruction, 4) Fixed JP and JNP conditional jump instruction types

This commit is contained in:
bird_egop
2025-04-16 19:43:03 +03:00
parent 193f9cd2d8
commit db96af74ff
13 changed files with 271 additions and 47 deletions

View File

@ -46,7 +46,7 @@ public class CmpAlImmHandler : InstructionHandler
byte imm8 = Decoder.ReadByte();
// Create the register operand for AL
var alOperand = OperandFactory.CreateRegisterOperand(RegisterIndex.A, 8);
var alOperand = OperandFactory.CreateRegisterOperand8(RegisterIndex8.AL);
// Create the immediate operand
var immOperand = OperandFactory.CreateImmediateOperand(imm8, 8);

View File

@ -0,0 +1,60 @@
using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.Cmp;
/// <summary>
/// Handler for CMP EAX, imm32 instruction (opcode 3D)
/// </summary>
public class CmpEaxImmHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the CmpEaxImmHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public CmpEaxImmHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// CMP EAX, imm32 is encoded as 3D
return opcode == 0x3D;
}
/// <summary>
/// Decodes a CMP EAX, imm32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.Cmp;
// Check if we have enough bytes for the immediate value
if (!Decoder.CanReadUInt())
{
return false;
}
// Read the immediate value
uint imm32 = Decoder.ReadUInt32();
// Set the structured operands
// CMP EAX, imm32 has two operands: EAX and the immediate value
instruction.StructuredOperands =
[
OperandFactory.CreateRegisterOperand(RegisterIndex.A),
OperandFactory.CreateImmediateOperand(imm32)
];
return true;
}
}

View File

@ -0,0 +1,70 @@
using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.Cmp;
/// <summary>
/// Handler for CMP r8, r/m8 instruction (0x3A)
/// </summary>
public class CmpR8Rm8Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the CmpR8Rm8Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public CmpR8Rm8Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
if (opcode != 0x3A)
return false;
// Check if we can read the ModR/M byte
if (!Decoder.CanReadByte())
return false;
return true;
}
/// <summary>
/// Decodes a CMP r8, r/m8 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.Cmp;
// Check if we have enough bytes for the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 8-bit operands
var (_, reg, _, sourceOperand) = ModRMDecoder.ReadModRM8();
// Note: The operand size is already set to 8-bit by the ReadModRM8 method
// Create the destination register operand using the 8-bit register type
var destinationOperand = OperandFactory.CreateRegisterOperand8(reg);
// Set the structured operands
instruction.StructuredOperands =
[
destinationOperand,
sourceOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.Cmp;
/// <summary>
/// Handler for CMP r/m8, r8 instruction (0x38)
/// </summary>
public class CmpRm8R8Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the CmpRm8R8Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public CmpRm8R8Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
if (opcode != 0x38)
return false;
// Check if we can read the ModR/M byte
if (!Decoder.CanReadByte())
return false;
return true;
}
/// <summary>
/// Decodes a CMP r/m8, r8 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.Cmp;
// Check if we have enough bytes for the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 8-bit operands
var (_, reg, _, destinationOperand) = ModRMDecoder.ReadModRM8();
// Note: The operand size is already set to 8-bit by the ReadModRM8 method
// Create the source register operand using the 8-bit register type
var sourceOperand = OperandFactory.CreateRegisterOperand8(reg);
// Set the structured operands
instruction.StructuredOperands =
[
destinationOperand,
sourceOperand
];
return true;
}
}

View File

@ -231,11 +231,18 @@ public class InstructionHandlerFactory
/// </summary>
private void RegisterCmpHandlers()
{
// Add Cmp handlers
// Add Cmp handlers for 32-bit operands
_handlers.Add(new CmpR32Rm32Handler(_decoder));
_handlers.Add(new CmpRm32R32Handler(_decoder));
// Add Cmp handlers for 8-bit operands
_handlers.Add(new CmpRm8R8Handler(_decoder)); // CMP r/m8, r8 (opcode 38)
_handlers.Add(new CmpR8Rm8Handler(_decoder)); // CMP r8, r/m8 (opcode 3A)
// Add Cmp handlers for immediate operands
_handlers.Add(new CmpImmWithRm8Handler(_decoder));
_handlers.Add(new CmpAlImmHandler(_decoder));
_handlers.Add(new CmpAlImmHandler(_decoder)); // CMP AL, imm8 (opcode 3C)
_handlers.Add(new CmpEaxImmHandler(_decoder)); // CMP EAX, imm32 (opcode 3D)
// Add CMP immediate handlers from ArithmeticImmediate namespace
_handlers.Add(new CmpImmWithRm32Handler(_decoder));

View File

@ -19,7 +19,7 @@ public class ConditionalJumpHandler : InstructionHandler
[
InstructionType.Jo, InstructionType.Jno, InstructionType.Jb, InstructionType.Jae,
InstructionType.Jz, InstructionType.Jnz, InstructionType.Jbe, InstructionType.Ja,
InstructionType.Js, InstructionType.Jns, InstructionType.Unknown, InstructionType.Unknown,
InstructionType.Js, InstructionType.Jns, InstructionType.Jp, InstructionType.Jnp,
InstructionType.Jl, InstructionType.Jge, InstructionType.Jle, InstructionType.Jg
];

View File

@ -102,13 +102,7 @@ public class ModRMDecoder
{
sbyte disp8 = (sbyte)_decoder.ReadByte();
// For EBP (BP), always create a displacement memory operand, even if displacement is 0
// This is because [EBP] with no displacement is encoded as [EBP+0]
if (disp8 == 0 && rmIndex != RegisterIndex.Bp)
{
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
// Always create a displacement memory operand for mod=1, even if displacement is 0
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, disp8, operandSize);
}
@ -140,7 +134,8 @@ public class ModRMDecoder
// This is because [EBP] with no displacement is encoded as [EBP+disp]
if (rmIndex == RegisterIndex.Bp)
{
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (int)disp32, operandSize);
// Cast to long to preserve the unsigned value for large displacements
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (long)disp32, operandSize);
}
// Only show displacement if it's not zero
@ -149,7 +144,8 @@ public class ModRMDecoder
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (int)disp32, operandSize);
// Cast to long to preserve the unsigned value for large displacements
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (long)disp32, operandSize);
}
// Fallback for incomplete data

View File

@ -35,10 +35,30 @@ public class DisplacementMemoryOperand : MemoryOperand
/// </summary>
public override string ToString()
{
string sign = Displacement >= 0 ? "+" : "-";
// Get register name
var registerName = RegisterMapper.GetRegisterName(BaseRegister, 32);
string formattedDisplacement = $"0x{Displacement:X2}";
// Format the displacement value
string formattedDisplacement;
string sign;
// Handle positive and negative displacements
if (Displacement >= 0)
{
sign = "+";
formattedDisplacement = Displacement < 256
? $"0x{Displacement:X2}"
: $"0x{Displacement:X8}";
}
else
{
sign = "-";
// For negative values, take the absolute value for display
var absDisplacement = Math.Abs(Displacement);
formattedDisplacement = absDisplacement < 256
? $"0x{absDisplacement:X2}"
: $"0x{absDisplacement:X8}";
}
return $"{GetSizePrefix()}[{registerName}{sign}{formattedDisplacement}]";
}