0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-06-20 08:18:36 +03:00

Refactored floating point handlers into specialized classes for better organization and maintainability

This commit is contained in:
bird_egop
2025-04-17 23:57:16 +03:00
parent 5916d13995
commit ec56576116
22 changed files with 1509 additions and 3 deletions

View File

@ -0,0 +1,63 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FABS instruction (D9 E1)
/// </summary>
public class FabsHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FabsHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FabsHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FABS is D9 E1
if (opcode != 0xD9) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the next byte is E1
byte nextByte = Decoder.PeakByte();
return nextByte == 0xE1;
}
/// <summary>
/// Decodes a FABS instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the second byte of the opcode
byte secondByte = Decoder.ReadByte();
// Set the instruction type
instruction.Type = InstructionType.Fabs;
// FABS has no operands
instruction.StructuredOperands = [];
return true;
}
}

View File

@ -0,0 +1,63 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCHS instruction (D9 E0)
/// </summary>
public class FchsHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FchsHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FchsHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCHS is D9 E0
if (opcode != 0xD9) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the next byte is E0
byte nextByte = Decoder.PeakByte();
return nextByte == 0xE0;
}
/// <summary>
/// Decodes a FCHS instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the second byte of the opcode
byte secondByte = Decoder.ReadByte();
// Set the instruction type
instruction.Type = InstructionType.Fchs;
// FCHS has no operands
instruction.StructuredOperands = [];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIADD int32 instruction (DA /0)
/// </summary>
public class FiaddInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FiaddInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FiaddInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIADD is DA /0
if (opcode != 0xDA) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 0 && mod != 3;
}
/// <summary>
/// Decodes a FIADD int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fiadd;
// Set the structured operands - the operand already has the correct size from ReadModRM
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIDIV int32 instruction (DA /6)
/// </summary>
public class FidivInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FidivInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FidivInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIDIV is DA /6
if (opcode != 0xDA) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 6 && mod != 3;
}
/// <summary>
/// Decodes a FIDIV int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fidiv;
// Set the structured operands - the operand already has the correct size from ReadModRM
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIDIVR int32 instruction (DA /7)
/// </summary>
public class FidivrInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FidivrInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FidivrInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIDIVR is DA /7
if (opcode != 0xDA) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 7 && mod != 3;
}
/// <summary>
/// Decodes a FIDIVR int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fidivr;
// Set the structured operands - the operand already has the correct size from ReadModRM
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIMUL int32 instruction (DA /1)
/// </summary>
public class FimulInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FimulInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FimulInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIMUL is DA /1
if (opcode != 0xDA) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 1 && mod != 3;
}
/// <summary>
/// Decodes a FIMUL int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fimul;
// Set the structured operands - the operand already has the correct size from ReadModRM
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISUB int32 instruction (DA /4)
/// </summary>
public class FisubInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FisubInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FisubInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISUB is DA /4
if (opcode != 0xDA) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 4 && mod != 3;
}
/// <summary>
/// Decodes a FISUB int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fisub;
// Set the structured operands - the operand already has the correct size from ReadModRM
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISUBR int32 instruction (DA /5)
/// </summary>
public class FisubrInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FisubrInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FisubrInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISUBR is DA /5
if (opcode != 0xDA) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 5 && mod != 3;
}
/// <summary>
/// Decodes a FISUBR int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fisubr;
// Set the structured operands - the operand already has the correct size from ReadModRM
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}