using X86Disassembler.X86.Operands; namespace X86Disassembler.X86.Handlers.And; /// /// Handler for AND r/m8, imm8 instruction (0x80 /4) /// public class AndImmToRm8Handler : InstructionHandler { /// /// Initializes a new instance of the AndImmToRm8Handler class /// /// The instruction decoder that owns this handler public AndImmToRm8Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { if (opcode != 0x80) { return false; } // Check if we have enough bytes to read the ModR/M byte if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte to check the reg field (bits 5-3) var reg = ModRMDecoder.PeakModRMReg(); // reg = 4 means AND operation return reg == 4; } /// /// Decodes an AND r/m8, imm8 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the instruction type instruction.Type = InstructionType.And; // Read the ModR/M byte, specifying that we're dealing with 8-bit operands // For AND r/m8, imm8 (0x80 /4): // - The r/m field with mod specifies the destination operand (register or memory) // - The immediate value is the source operand var (_, _, _, destinationOperand) = ModRMDecoder.ReadModRM8(); // Note: The operand size is already set to 8-bit by the ReadModRM8 method if (!Decoder.CanReadByte()) { return false; // Not enough bytes for the immediate value } // Read the immediate value byte imm8 = Decoder.ReadByte(); // Create the source immediate operand var sourceOperand = OperandFactory.CreateImmediateOperand(imm8, 8); // Set the structured operands instruction.StructuredOperands = [ destinationOperand, sourceOperand ]; return true; } }