namespace X86Disassembler.X86.Handlers.And; using Operands; /// /// Handler for AND r/m8, r8 instruction (0x20) /// public class AndRm8R8Handler : InstructionHandler { /// /// Initializes a new instance of the AndRm8R8Handler class /// /// The instruction decoder that owns this handler public AndRm8R8Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { return opcode == 0x20; } /// /// Decodes an AND r/m8, r8 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the instruction type instruction.Type = InstructionType.And; if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte, specifying that we're dealing with 8-bit operands var (mod, reg, rm, destOperand) = ModRMDecoder.ReadModRM8(); // Create the source register operand using the 8-bit register type var srcOperand = OperandFactory.CreateRegisterOperand8(reg); // For mod == 3, both operands are registers if (mod == 3) { // Create a register operand for the r/m field using the 8-bit register type var rmOperand = OperandFactory.CreateRegisterOperand8(rm); // Set the structured operands instruction.StructuredOperands = [ rmOperand, srcOperand ]; } else // Memory operand { // Note: The operand size is already set to 8-bit by the ReadModRM8 method // Set the structured operands instruction.StructuredOperands = [ destOperand, srcOperand ]; } return true; } }