using X86Disassembler.X86.Operands; namespace X86Disassembler.X86.Handlers.Xor; /// /// Handler for XOR r/m16, imm16 instruction (0x81 /6 with 0x66 prefix) /// public class XorImmWithRm16Handler : InstructionHandler { /// /// Initializes a new instance of the XorImmWithRm16Handler class /// /// The instruction decoder that owns this handler public XorImmWithRm16Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { if (opcode != 0x81 || !Decoder.HasOperandSizePrefix()) return false; // Check if the reg field of the ModR/M byte is 6 (XOR) if (!Decoder.CanReadByte()) return false; var reg = ModRMDecoder.PeakModRMReg(); return reg == 6; // 6 = XOR } /// /// Decodes a XOR r/m16, imm16 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the instruction type instruction.Type = InstructionType.Xor; // Check if we have enough bytes for the ModR/M byte if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte, specifying that we're dealing with 16-bit operands var (_, _, _, destinationOperand) = ModRMDecoder.ReadModRM16(); // Note: The operand size is already set to 16-bit by the ReadModRM16 method // Check if we have enough bytes for the immediate value if (!Decoder.CanReadUShort()) { return false; } // Read the immediate value ushort imm16 = Decoder.ReadUInt16(); // Create the source immediate operand var sourceOperand = OperandFactory.CreateImmediateOperand(imm16, 16); // Set the structured operands instruction.StructuredOperands = [ destinationOperand, sourceOperand ]; return true; } }