using X86Disassembler.X86.Operands; namespace X86Disassembler.X86.Handlers.Xor; /// /// Handler for XOR r16, r/m16 instruction (0x33 with 0x66 prefix) /// public class XorR16Rm16Handler : InstructionHandler { /// /// Initializes a new instance of the XorR16Rm16Handler class /// /// The instruction decoder that owns this handler public XorR16Rm16Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // Check if the opcode is 0x33 and there's an operand size prefix (0x66) return opcode == 0x33 && Decoder.HasOperandSizePrefix(); } /// /// Decodes a XOR r16, r/m16 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the instruction type instruction.Type = InstructionType.Xor; if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte // For XOR r16, r/m16 (0x33 with 0x66 prefix): // - The reg field specifies the destination register // - The r/m field with mod specifies the source operand (register or memory) var (_, reg, _, sourceOperand) = ModRMDecoder.ReadModRM16(); // Note: The operand size is already set to 16-bit by the ReadModRM16 method // Create the destination register operand var destinationOperand = OperandFactory.CreateRegisterOperand(reg, 16); // Set the structured operands instruction.StructuredOperands = [ destinationOperand, sourceOperand ]; return true; } }