using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.Xor;
///
/// Handler for XOR r16, r/m16 instruction (0x33 with 0x66 prefix)
///
public class XorR16Rm16Handler : InstructionHandler
{
///
/// Initializes a new instance of the XorR16Rm16Handler class
///
/// The instruction decoder that owns this handler
public XorR16Rm16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
///
/// Checks if this handler can decode the given opcode
///
/// The opcode to check
/// True if this handler can decode the opcode
public override bool CanHandle(byte opcode)
{
// Check if the opcode is 0x33 and there's an operand size prefix (0x66)
return opcode == 0x33 && Decoder.HasOperandSizePrefix();
}
///
/// Decodes a XOR r16, r/m16 instruction
///
/// The opcode of the instruction
/// The instruction object to populate
/// True if the instruction was successfully decoded
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.Xor;
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
// For XOR r16, r/m16 (0x33 with 0x66 prefix):
// - The reg field specifies the destination register
// - The r/m field with mod specifies the source operand (register or memory)
var (_, reg, _, sourceOperand) = ModRMDecoder.ReadModRM16();
// Note: The operand size is already set to 16-bit by the ReadModRM16 method
// Create the destination register operand
var destinationOperand = OperandFactory.CreateRegisterOperand(reg, 16);
// Set the structured operands
instruction.StructuredOperands =
[
destinationOperand,
sourceOperand
];
return true;
}
}