using X86Disassembler.X86.Operands; namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison; /// /// Handler for FCOMP float32 instruction (D8 /3) /// public class FcompFloat32Handler : InstructionHandler { /// /// Initializes a new instance of the FcompFloat32Handler class /// /// The instruction decoder that owns this handler public FcompFloat32Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // FCOMP is D8 /3 if (opcode != 0xD8) return false; if (!Decoder.CanReadByte()) { return false; } // Check if the ModR/M byte has reg field = 3 byte modRm = Decoder.PeakByte(); byte reg = (byte)((modRm >> 3) & 0x7); // special handling of modRM for D8 D8+i FCOMP ST(i) return reg == 3 && modRm is < 0xD8 or > 0xDE; } /// /// Decodes a FCOMP float32 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte using the specialized FPU method var (mod, reg, fpuRm, rawOperand) = ModRMDecoder.ReadModRMFpu(); // Set the instruction type instruction.Type = InstructionType.Fcomp; // For memory operands, set the operand if (mod != 3) // Memory operand { // Set the structured operands - the operand already has the correct size from ReadModRM instruction.StructuredOperands = [ rawOperand ]; } else // Register operand (ST(i)) { // For register operands, we need to handle the stack registers var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0); // ST(0) var stiOperand = OperandFactory.CreateFPURegisterOperand(fpuRm); // ST(i) // Set the structured operands instruction.StructuredOperands = [ st0Operand, stiOperand ]; } return true; } }