namespace X86Disassembler.X86.Handlers.Adc; using Operands; /// /// Handler for ADC r/m16, imm16 instruction (0x81 /2 with 0x66 prefix) /// public class AdcImmToRm16Handler : InstructionHandler { /// /// Initializes a new instance of the AdcImmToRm16Handler class /// /// The instruction decoder that owns this handler public AdcImmToRm16Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // ADC r/m16, imm16 is encoded as 0x81 /2 with 0x66 prefix if (opcode != 0x81) { return false; } // Check if we have enough bytes to read the ModR/M byte if (!Decoder.CanReadByte()) { return false; } // Check if the reg field of the ModR/M byte is 2 (ADC) var reg = ModRMDecoder.PeakModRMReg(); // Only handle when the operand size prefix is present return reg == 2 && Decoder.HasOperandSizePrefix(); } /// /// Decodes a ADC r/m16, imm16 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the instruction type instruction.Type = InstructionType.Adc; // Read the ModR/M byte, specifying that we're dealing with 16-bit operands var (_, _, _, destinationOperand) = ModRMDecoder.ReadModRM16(); // Note: The operand size is already set to 16-bit by the ReadModRM16 method // Check if we have enough bytes for the immediate value if (!Decoder.CanReadUShort()) { return false; } // Read the immediate value ushort imm16 = Decoder.ReadUInt16(); // Create the immediate operand var sourceOperand = OperandFactory.CreateImmediateOperand(imm16, 16); // Set the structured operands instruction.StructuredOperands = [ destinationOperand, sourceOperand ]; return true; } }