using X86Disassembler.X86.Operands; namespace X86Disassembler.X86.Handlers.Call; /// /// Handler for CALL r/m32 instruction (FF /2) /// public class CallRm32Handler : InstructionHandler { /// /// Initializes a new instance of the CallRm32Handler class /// /// The instruction decoder that owns this handler public CallRm32Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // CALL r/m32 is encoded as FF /2 if (opcode != 0xFF) { return false; } // Check if we have enough bytes to read the ModR/M byte if (!Decoder.CanReadByte()) { return false; } // Extract the reg field (bits 3-5) var reg = ModRMDecoder.PeakModRMReg(); // CALL r/m32 is encoded as FF /2 (reg field = 2) // Only handle when the operand size prefix is NOT present // This ensures 16-bit handlers get priority when the prefix is present return reg == 2 && !Decoder.HasOperandSizePrefix(); } /// /// Decodes a CALL r/m32 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the instruction type instruction.Type = InstructionType.Call; // Check if we have enough bytes for the ModR/M byte if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte // For CALL r/m32 (FF /2): // - The r/m field with mod specifies the operand (register or memory) var (_, _, _, operand) = ModRMDecoder.ReadModRM(); // Set the structured operands // CALL has only one operand instruction.StructuredOperands = [ operand ]; return true; } }