using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.Call;
///
/// Handler for CALL r/m32 instruction (FF /2)
///
public class CallRm32Handler : InstructionHandler
{
///
/// Initializes a new instance of the CallRm32Handler class
///
/// The instruction decoder that owns this handler
public CallRm32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
///
/// Checks if this handler can decode the given opcode
///
/// The opcode to check
/// True if this handler can decode the opcode
public override bool CanHandle(byte opcode)
{
// CALL r/m32 is encoded as FF /2
if (opcode != 0xFF)
{
return false;
}
// Check if we have enough bytes to read the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
// Extract the reg field (bits 3-5)
var reg = ModRMDecoder.PeakModRMReg();
// CALL r/m32 is encoded as FF /2 (reg field = 2)
// Only handle when the operand size prefix is NOT present
// This ensures 16-bit handlers get priority when the prefix is present
return reg == 2 && !Decoder.HasOperandSizePrefix();
}
///
/// Decodes a CALL r/m32 instruction
///
/// The opcode of the instruction
/// The instruction object to populate
/// True if the instruction was successfully decoded
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.Call;
// Check if we have enough bytes for the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
// For CALL r/m32 (FF /2):
// - The r/m field with mod specifies the operand (register or memory)
var (_, _, _, operand) = ModRMDecoder.ReadModRM();
// Set the structured operands
// CALL has only one operand
instruction.StructuredOperands =
[
operand
];
return true;
}
}