using X86Disassembler.X86.Operands; namespace X86Disassembler.X86.Handlers.Imul; /// /// Handler for IMUL r32, r/m32 instruction (0x0F 0xAF /r) /// public class ImulR32Rm32Handler : InstructionHandler { /// /// Initializes a new instance of the ImulR32Rm32Handler class /// /// The instruction decoder that owns this handler public ImulR32Rm32Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode sequence /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // IMUL r32, r/m32: opcode 0F AF /r if (opcode != 0x0F) return false; // Check if we can read the second byte if (!Decoder.CanReadByte()) return false; // Check if the second byte is 0xAF byte secondByte = Decoder.PeakByte(); // Only handle when the operand size prefix is NOT present // This ensures 16-bit handlers get priority when the prefix is present return secondByte == 0xAF && !Decoder.HasOperandSizePrefix(); } /// /// Decodes an IMUL r32, r/m32 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { instruction.Type = InstructionType.IMul; // Read the second byte of the opcode (0xAF) if (!Decoder.CanReadByte()) { return false; } byte secondByte = Decoder.ReadByte(); if (secondByte != 0xAF) { return false; } // Read ModR/M: reg = destination, r/m = source var (_, reg, _, operand) = ModRMDecoder.ReadModRM(); // Create the destination register operand (32-bit) var destOperand = OperandFactory.CreateRegisterOperand(reg); // Source operand is already an Operand instruction.StructuredOperands = [ destOperand, operand ]; return true; } }