using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.Pop;
///
/// Handler for POP r/m32 instruction (0x8F /0)
///
public class PopRm32Handler : InstructionHandler
{
///
/// Initializes a new instance of the PopRm32Handler class
///
/// The instruction decoder that owns this handler
public PopRm32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
///
/// Checks if this handler can decode the given opcode
///
/// The opcode to check
/// True if this handler can decode the opcode
public override bool CanHandle(byte opcode)
{
// POP r/m32 is encoded as 8F /0
if (opcode != 0x8F)
{
return false;
}
// Check if we have enough bytes to read the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
var reg = ModRMDecoder.PeakModRMReg();
// POP r/m32 is encoded as 8F /0 (reg field = 0)
// Only handle when the operand size prefix is NOT present
// This ensures 16-bit handlers get priority when the prefix is present
return reg == 0 && !Decoder.HasOperandSizePrefix();
}
///
/// Decodes a POP r/m32 instruction
///
/// The opcode of the instruction
/// The instruction object to populate
/// True if the instruction was successfully decoded
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.Pop;
// Check if we have enough bytes for the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
// For POP r/m32 (8F /0):
// - The r/m field with mod specifies the operand (register or memory)
var (_, _, _, operand) = ModRMDecoder.ReadModRM();
// Set the structured operands
// POP has only one operand
instruction.StructuredOperands =
[
operand
];
return true;
}
}