using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.And;
///
/// Handler for AND r/m32, imm8 (sign-extended) instruction (0x83 /4)
///
public class AndImmToRm32SignExtendedHandler : InstructionHandler
{
///
/// Initializes a new instance of the AndImmToRm32SignExtendedHandler class
///
/// The instruction decoder that owns this handler
public AndImmToRm32SignExtendedHandler(InstructionDecoder decoder)
: base(decoder)
{
}
///
/// Checks if this handler can decode the given opcode
///
/// The opcode to check
/// True if this handler can decode the opcode
public override bool CanHandle(byte opcode)
{
if (opcode != 0x83)
{
return false;
}
// Check if we have enough bytes to read the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte to check the reg field (bits 5-3)
byte modRM = Decoder.PeakByte();
int reg = (modRM >> 3) & 0x7;
// reg = 4 means AND operation
return reg == 4;
}
///
/// Decodes an AND r/m32, imm8 (sign-extended) instruction
///
/// The opcode of the instruction
/// The instruction object to populate
/// True if the instruction was successfully decoded
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.And;
// Read the ModR/M byte
// For AND r/m32, imm8 (sign-extended) (0x83 /4):
// - The r/m field with mod specifies the destination operand (register or memory)
// - The immediate value is the source operand (sign-extended from 8 to 32 bits)
var (mod, reg, rm, destinationOperand) = ModRMDecoder.ReadModRM();
if (!Decoder.CanReadByte())
{
return false; // Not enough bytes for the immediate value
}
// Read the immediate value as a signed byte and automatically sign-extend it to int
sbyte imm = (sbyte)Decoder.ReadByte();
// Create the source immediate operand with the sign-extended value
var sourceOperand = OperandFactory.CreateImmediateOperand((uint)imm);
// Set the structured operands
instruction.StructuredOperands =
[
destinationOperand,
sourceOperand
];
return true;
}
}