using X86Disassembler.X86.Operands; namespace X86Disassembler.X86.Handlers.And; /// /// Handler for AND r/m32, imm8 (sign-extended) instruction (0x83 /4) /// public class AndImmToRm32SignExtendedHandler : InstructionHandler { /// /// Initializes a new instance of the AndImmToRm32SignExtendedHandler class /// /// The instruction decoder that owns this handler public AndImmToRm32SignExtendedHandler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { if (opcode != 0x83) { return false; } // Check if we have enough bytes to read the ModR/M byte if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte to check the reg field (bits 5-3) byte modRM = Decoder.PeakByte(); int reg = (modRM >> 3) & 0x7; // reg = 4 means AND operation return reg == 4; } /// /// Decodes an AND r/m32, imm8 (sign-extended) instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the instruction type instruction.Type = InstructionType.And; // Read the ModR/M byte // For AND r/m32, imm8 (sign-extended) (0x83 /4): // - The r/m field with mod specifies the destination operand (register or memory) // - The immediate value is the source operand (sign-extended from 8 to 32 bits) var (mod, reg, rm, destinationOperand) = ModRMDecoder.ReadModRM(); if (!Decoder.CanReadByte()) { return false; // Not enough bytes for the immediate value } // Read the immediate value as a signed byte and automatically sign-extend it to int sbyte imm = (sbyte)Decoder.ReadByte(); // Create the source immediate operand with the sign-extended value var sourceOperand = OperandFactory.CreateImmediateOperand((uint)imm); // Set the structured operands instruction.StructuredOperands = [ destinationOperand, sourceOperand ]; return true; } }