using X86Disassembler.X86; namespace X86DisassemblerTests.InstructionTests; /// /// Tests for Group3 instruction handlers /// public class Group3InstructionTests { /// /// Tests the NotRm32Handler for decoding NOT r/m32 instruction /// [Fact] public void NotRm32Handler_DecodesNotRm32_Correctly() { // Arrange // NOT EAX (F7 D0) - ModR/M byte D0 = 11 010 000 (mod=3, reg=2, rm=0) // mod=3 means direct register addressing, reg=2 indicates NOT operation, rm=0 is EAX byte[] codeBuffer = new byte[] { 0xF7, 0xD0 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal("not", instruction.Mnemonic); Assert.Equal("eax", instruction.Operands); } /// /// Tests the NegRm32Handler for decoding NEG r/m32 instruction /// [Fact] public void NegRm32Handler_DecodesNegRm32_Correctly() { // Arrange // NEG ECX (F7 D9) - ModR/M byte D9 = 11 011 001 (mod=3, reg=3, rm=1) // mod=3 means direct register addressing, reg=3 indicates NEG operation, rm=1 is ECX byte[] codeBuffer = new byte[] { 0xF7, 0xD9 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal("neg", instruction.Mnemonic); Assert.Equal("ecx", instruction.Operands); } /// /// Tests the MulRm32Handler for decoding MUL r/m32 instruction /// [Fact] public void MulRm32Handler_DecodesMulRm32_Correctly() { // Arrange // MUL EDX (F7 E2) - ModR/M byte E2 = 11 100 010 (mod=3, reg=4, rm=2) // mod=3 means direct register addressing, reg=4 indicates MUL operation, rm=2 is EDX byte[] codeBuffer = new byte[] { 0xF7, 0xE2 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal("mul", instruction.Mnemonic); Assert.Equal("edx", instruction.Operands); } /// /// Tests the ImulRm32Handler for decoding IMUL r/m32 instruction /// [Fact] public void ImulRm32Handler_DecodesImulRm32_Correctly() { // Arrange // IMUL EBX (F7 EB) - ModR/M byte EB = 11 101 011 (mod=3, reg=5, rm=3) // mod=3 means direct register addressing, reg=5 indicates IMUL operation, rm=3 is EBX byte[] codeBuffer = new byte[] { 0xF7, 0xEB }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal("imul", instruction.Mnemonic); Assert.Equal("ebx", instruction.Operands); } /// /// Tests the DivRm32Handler for decoding DIV r/m32 instruction /// [Fact] public void DivRm32Handler_DecodesDivRm32_Correctly() { // Arrange // DIV ESP (F7 F4) - ModR/M byte F4 = 11 110 100 (mod=3, reg=6, rm=4) // mod=3 means direct register addressing, reg=6 indicates DIV operation, rm=4 is ESP byte[] codeBuffer = new byte[] { 0xF7, 0xF4 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal("div", instruction.Mnemonic); Assert.Equal("esp", instruction.Operands); } /// /// Tests the IdivRm32Handler for decoding IDIV r/m32 instruction /// [Fact] public void IdivRm32Handler_DecodesIdivRm32_Correctly() { // Arrange // IDIV EBP (F7 FD) - ModR/M byte FD = 11 111 101 (mod=3, reg=7, rm=5) // mod=3 means direct register addressing, reg=7 indicates IDIV operation, rm=5 is EBP byte[] codeBuffer = new byte[] { 0xF7, 0xFD }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal("idiv", instruction.Mnemonic); Assert.Equal("ebp", instruction.Operands); } }