namespace X86Disassembler.X86.Handlers;
///
/// Handler for floating-point instructions (D8-DF opcodes)
///
public class FloatingPointHandler : InstructionHandler
{
// Floating-point instruction mnemonics based on opcode and ModR/M reg field
private static readonly string[][] FpuMnemonics = new string[8][];
// Two-byte floating-point instructions
private static readonly Dictionary TwoByteInstructions = new Dictionary();
///
/// Static constructor to initialize the FPU mnemonic tables
///
static FloatingPointHandler()
{
InitializeFpuMnemonics();
InitializeTwoByteInstructions();
}
///
/// Initializes the FPU mnemonic tables
///
private static void InitializeFpuMnemonics()
{
// Initialize all tables
for (int i = 0; i < 8; i++)
{
FpuMnemonics[i] = new string[8];
for (int j = 0; j < 8; j++)
{
FpuMnemonics[i][j] = "??";
}
}
// D8 opcode - operations on float32
FpuMnemonics[0][0] = "fadd";
FpuMnemonics[0][1] = "fmul";
FpuMnemonics[0][2] = "fcom";
FpuMnemonics[0][3] = "fcomp";
FpuMnemonics[0][4] = "fsub";
FpuMnemonics[0][5] = "fsubr";
FpuMnemonics[0][6] = "fdiv";
FpuMnemonics[0][7] = "fdivr";
// D9 opcode - load, store, and control operations
FpuMnemonics[1][0] = "fld";
FpuMnemonics[1][2] = "fst";
FpuMnemonics[1][3] = "fstp";
FpuMnemonics[1][4] = "fldenv";
FpuMnemonics[1][5] = "fldcw";
FpuMnemonics[1][6] = "fnstenv";
FpuMnemonics[1][7] = "fnstcw";
// DA opcode - operations on int32
FpuMnemonics[2][0] = "fiadd";
FpuMnemonics[2][1] = "fimul";
FpuMnemonics[2][2] = "ficom";
FpuMnemonics[2][3] = "ficomp";
FpuMnemonics[2][4] = "fisub";
FpuMnemonics[2][5] = "fisubr";
FpuMnemonics[2][6] = "fidiv";
FpuMnemonics[2][7] = "fidivr";
// DB opcode - load/store int32, misc
FpuMnemonics[3][0] = "fild";
FpuMnemonics[3][2] = "fist";
FpuMnemonics[3][3] = "fistp";
FpuMnemonics[3][5] = "fld";
FpuMnemonics[3][7] = "fstp";
// DC opcode - operations on float64
FpuMnemonics[4][0] = "fadd";
FpuMnemonics[4][1] = "fmul";
FpuMnemonics[4][2] = "fcom";
FpuMnemonics[4][3] = "fcomp";
FpuMnemonics[4][4] = "fsub";
FpuMnemonics[4][5] = "fsubr";
FpuMnemonics[4][6] = "fdiv";
FpuMnemonics[4][7] = "fdivr";
// DD opcode - load/store float64
FpuMnemonics[5][0] = "fld";
FpuMnemonics[5][2] = "fst";
FpuMnemonics[5][3] = "fstp";
FpuMnemonics[5][4] = "frstor";
FpuMnemonics[5][6] = "fnsave";
FpuMnemonics[5][7] = "fnstsw";
// DE opcode - operations on int16
FpuMnemonics[6][0] = "fiadd";
FpuMnemonics[6][1] = "fimul";
FpuMnemonics[6][2] = "ficom";
FpuMnemonics[6][3] = "ficomp";
FpuMnemonics[6][4] = "fisub";
FpuMnemonics[6][5] = "fisubr";
FpuMnemonics[6][6] = "fidiv";
FpuMnemonics[6][7] = "fidivr";
// DF opcode - load/store int16, misc
FpuMnemonics[7][0] = "fild";
FpuMnemonics[7][2] = "fist";
FpuMnemonics[7][3] = "fistp";
FpuMnemonics[7][4] = "fbld";
FpuMnemonics[7][5] = "fild";
FpuMnemonics[7][6] = "fbstp";
FpuMnemonics[7][7] = "fistp";
}
///
/// Initializes the two-byte floating-point instructions
///
private static void InitializeTwoByteInstructions()
{
// We no longer need to handle FNSTSW AX (DF E0) here since we have a dedicated FnstswHandler
// that is registered before this handler in the InstructionHandlerFactory
// Add other two-byte instructions as needed
}
///
/// Initializes a new instance of the FloatingPointHandler class
///
/// The buffer containing the code to decode
/// The instruction decoder that owns this handler
/// The length of the buffer
public FloatingPointHandler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
}
///
/// Checks if this handler can decode the given opcode
///
/// The opcode to check
/// True if this handler can decode the opcode
public override bool CanHandle(byte opcode)
{
return opcode >= 0xD8 && opcode <= 0xDF;
}
///
/// Decodes a floating-point instruction
///
/// The opcode of the instruction
/// The instruction object to populate
/// True if the instruction was successfully decoded
public override bool Decode(byte opcode, Instruction instruction)
{
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Check for two-byte instructions
if (position < Length)
{
// Create a two-byte opcode by combining the primary opcode with the next byte
ushort twoByteOpcode = (ushort)((opcode << 8) | CodeBuffer[position]);
// Check if this is a known two-byte instruction
if (TwoByteInstructions.TryGetValue(twoByteOpcode, out string? mnemonic) && mnemonic != null)
{
instruction.Mnemonic = mnemonic;
Decoder.SetPosition(position + 1); // Skip the second byte
return true;
}
}
// The opcode index in our tables (0-7 for D8-DF)
int opcodeIndex = opcode - 0xD8;
// Read the ModR/M byte
var (mod, reg, rm, operand) = ModRMDecoder.ReadModRM(opcodeIndex == 7); // DF uses 64-bit operands
// Set the mnemonic based on the opcode and reg field
instruction.Mnemonic = FpuMnemonics[opcodeIndex][reg];
// For memory operands, set the operand
if (mod != 3) // Memory operand
{
instruction.Operands = operand;
}
else // Register operand (ST(i))
{
// For register operands, we need to handle the stack registers
// This is a simplified implementation and may need to be expanded
instruction.Operands = $"st({rm})";
}
return true;
}
}