namespace X86Disassembler.X86; using X86Disassembler.X86.Operands; /// /// Handles decoding of ModR/M bytes in x86 instructions /// public class ModRMDecoder { // ModR/M byte masks private const byte MOD_MASK = 0xC0; // 11000000b private const byte REG_MASK = 0x38; // 00111000b private const byte RM_MASK = 0x07; // 00000111b // SIB byte masks private const byte SIB_SCALE_MASK = 0xC0; // 11000000b private const byte SIB_INDEX_MASK = 0x38; // 00111000b private const byte SIB_BASE_MASK = 0x07; // 00000111b // Register names for different sizes private static readonly string[] RegisterNames8 = {"al", "cl", "dl", "bl", "ah", "ch", "dh", "bh"}; private static readonly string[] RegisterNames16 = {"ax", "cx", "dx", "bx", "sp", "bp", "si", "di"}; private static readonly string[] RegisterNames32 = {"eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi"}; // The instruction decoder that owns this ModRM decoder private readonly InstructionDecoder _decoder; /// /// Initializes a new instance of the ModRMDecoder class /// /// The instruction decoder that owns this ModRM decoder public ModRMDecoder(InstructionDecoder decoder) { _decoder = decoder; } /// /// Decodes a ModR/M byte to get the operand /// /// The mod field (2 bits) /// The r/m field as RegisterIndex /// True if the operand is 64-bit /// The operand object public Operand DecodeModRM(byte mod, RegisterIndex rmIndex, bool is64Bit) { int operandSize = is64Bit ? 64 : 32; switch (mod) { case 0: // [reg] or disp32 // Special case: [EBP] is encoded as disp32 with no base register if (rmIndex == RegisterIndex.Di) // disp32 (was EBP/BP) { if (_decoder.CanReadUInt()) { uint disp32 = _decoder.ReadUInt32(); return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize); } // Fallback for incomplete data return OperandFactory.CreateDirectMemoryOperand(0, operandSize); } // Special case: [ESP] is encoded with SIB byte if (rmIndex == RegisterIndex.Si) // SIB (was ESP/SP) { // Handle SIB byte if (_decoder.CanReadByte()) { byte sib = _decoder.ReadByte(); return DecodeSIB(sib, 0, is64Bit); } // Fallback for incomplete data return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Si, operandSize); } // Regular case: [reg] return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize); case 1: // [reg + disp8] if (rmIndex == RegisterIndex.Si) // SIB + disp8 (was ESP/SP) { // Handle SIB byte if (_decoder.CanReadByte()) { byte sib = _decoder.ReadByte(); sbyte disp8 = (sbyte)(_decoder.CanReadByte() ? _decoder.ReadByte() : 0); return DecodeSIB(sib, (uint)disp8, is64Bit); } // Fallback for incomplete data return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Si, operandSize); } else { if (_decoder.CanReadByte()) { sbyte disp8 = (sbyte)_decoder.ReadByte(); // Only show displacement if it's not zero if (disp8 == 0) { return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize); } return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, disp8, operandSize); } // Fallback for incomplete data return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize); } case 2: // [reg + disp32] if (rmIndex == RegisterIndex.Si) // SIB + disp32 (was ESP/SP) { // Handle SIB byte if (_decoder.CanReadUInt()) { byte sib = _decoder.ReadByte(); uint disp32 = _decoder.ReadUInt32(); return DecodeSIB(sib, disp32, is64Bit); } // Fallback for incomplete data return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Si, operandSize); } else { if (_decoder.CanReadUInt()) { uint disp32 = _decoder.ReadUInt32(); // Only show displacement if it's not zero if (disp32 == 0) { return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize); } return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (int)disp32, operandSize); } // Fallback for incomplete data return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize); } case 3: // reg (direct register access) return OperandFactory.CreateRegisterOperand(rmIndex, operandSize); default: // Fallback for invalid mod value return OperandFactory.CreateRegisterOperand(RegisterIndex.A, operandSize); } } /// /// Reads and decodes a ModR/M byte /// /// True if the operand is 64-bit /// A tuple containing the mod, reg, rm fields and the decoded operand public (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRM(bool is64Bit = false) { if (!_decoder.CanReadByte()) { return (0, RegisterIndex.A, RegisterIndex.A, OperandFactory.CreateRegisterOperand(RegisterIndex.A, is64Bit ? 64 : 32)); } byte modRM = _decoder.ReadByte(); // Extract fields from ModR/M byte byte mod = (byte)((modRM & MOD_MASK) >> 6); RegisterIndex reg = (RegisterIndex)((modRM & REG_MASK) >> 3); RegisterIndex rm = (RegisterIndex)(modRM & RM_MASK); Operand operand = DecodeModRM(mod, rm, is64Bit); return (mod, reg, rm, operand); } /// /// Decodes a SIB byte /// /// The SIB byte /// The displacement value /// True if the operand is 64-bit /// The decoded SIB operand private Operand DecodeSIB(byte sib, uint displacement, bool is64Bit) { int operandSize = is64Bit ? 64 : 32; // Extract fields from SIB byte byte scale = (byte)((sib & SIB_SCALE_MASK) >> 6); RegisterIndex index = (RegisterIndex)((sib & SIB_INDEX_MASK) >> 3); RegisterIndex @base = (RegisterIndex)(sib & SIB_BASE_MASK); // Special case: ESP/SP (4) in index field means no index register if (index == RegisterIndex.Si) { // Special case: EBP/BP (5) in base field with no displacement means disp32 only if (@base == RegisterIndex.Di && displacement == 0) { if (_decoder.CanReadUInt()) { uint disp32 = _decoder.ReadUInt32(); return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize); } // Fallback for incomplete data return OperandFactory.CreateDirectMemoryOperand(0, operandSize); } // Base register only with displacement if (displacement == 0) { return OperandFactory.CreateBaseRegisterMemoryOperand(@base, operandSize); } return OperandFactory.CreateDisplacementMemoryOperand(@base, (int)displacement, operandSize); } // Normal case with base and index registers int scaleFactor = 1 << scale; // 1, 2, 4, or 8 // Create a scaled index memory operand return OperandFactory.CreateScaledIndexMemoryOperand( index, scaleFactor, @base, (int)displacement, operandSize); } /// /// Gets the register name based on the register index and size /// /// The register index as RegisterIndex enum /// The register size (8, 16, or 32 bits) /// The register name public static string GetRegisterName(RegisterIndex regIndex, int size) { // Convert RegisterIndex to raw index for array access int index = (int)regIndex; return size switch { 8 => RegisterNames8[index], 16 => RegisterNames16[index], 32 => RegisterNames32[index], _ => RegisterNames32[index] // Default to 32-bit registers }; } }