namespace X86Disassembler.X86.Handlers.ArithmeticUnary; /// /// Handler for NOT r/m32 instruction (0xF7 /2) /// public class NotRm32Handler : InstructionHandler { /// /// Initializes a new instance of the NotRm32Handler class /// /// The buffer containing the code to decode /// The instruction decoder that owns this handler /// The length of the buffer public NotRm32Handler(byte[] codeBuffer, InstructionDecoder decoder, int length) : base(codeBuffer, decoder, length) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // This handler only handles opcode 0xF7 if (opcode != 0xF7) return false; // Check if the reg field of the ModR/M byte is 2 (NOT) int position = Decoder.GetPosition(); if (!Decoder.CanReadByte()) return false; byte modRM = CodeBuffer[position]; byte reg = (byte) ((modRM & 0x38) >> 3); return reg == 2; // 2 = NOT } /// /// Decodes a NOT r/m32 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte var (mod, reg, rm, destOperand) = ModRMDecoder.ReadModRM(); // Verify this is a NOT instruction if (reg != RegisterIndex.C) { return false; } // Set the mnemonic instruction.Mnemonic = "not"; // For direct register addressing (mod == 3), the r/m field specifies a register if (mod == 3) { destOperand = ModRMDecoder.GetRegisterName(rm, 32); } // Set the operands instruction.Operands = destOperand; return true; } }