namespace X86Disassembler.X86.Handlers.ArithmeticUnary;
///
/// Handler for NOT r/m32 instruction (0xF7 /2)
///
public class NotRm32Handler : InstructionHandler
{
///
/// Initializes a new instance of the NotRm32Handler class
///
/// The buffer containing the code to decode
/// The instruction decoder that owns this handler
/// The length of the buffer
public NotRm32Handler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
}
///
/// Checks if this handler can decode the given opcode
///
/// The opcode to check
/// True if this handler can decode the opcode
public override bool CanHandle(byte opcode)
{
// This handler only handles opcode 0xF7
if (opcode != 0xF7)
return false;
// Check if the reg field of the ModR/M byte is 2 (NOT)
int position = Decoder.GetPosition();
if (!Decoder.CanReadByte())
return false;
byte modRM = CodeBuffer[position];
byte reg = (byte) ((modRM & 0x38) >> 3);
return reg == 2; // 2 = NOT
}
///
/// Decodes a NOT r/m32 instruction
///
/// The opcode of the instruction
/// The instruction object to populate
/// True if the instruction was successfully decoded
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, destOperand) = ModRMDecoder.ReadModRM();
// Verify this is a NOT instruction
if (reg != RegisterIndex.C)
{
return false;
}
// Set the mnemonic
instruction.Mnemonic = "not";
// For direct register addressing (mod == 3), the r/m field specifies a register
if (mod == 3)
{
destOperand = ModRMDecoder.GetRegisterName(rm, 32);
}
// Set the operands
instruction.Operands = destOperand;
return true;
}
}