namespace X86Disassembler.X86.Handlers.Sub; /// /// Handler for SUB r/m32, imm8 (sign-extended) instruction (0x83 /5) /// public class SubImmFromRm32SignExtendedHandler : InstructionHandler { /// /// Initializes a new instance of the SubImmFromRm32SignExtendedHandler class /// /// The buffer containing the code to decode /// The instruction decoder that owns this handler /// The length of the buffer public SubImmFromRm32SignExtendedHandler(byte[] codeBuffer, InstructionDecoder decoder, int length) : base(codeBuffer, decoder, length) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { if (opcode != 0x83) return false; // Check if the reg field of the ModR/M byte is 5 (SUB) if (!Decoder.CanReadByte()) return false; byte modRM = CodeBuffer[Decoder.GetPosition()]; byte reg = (byte) ((modRM & 0x38) >> 3); return reg == 5; // 5 = SUB } /// /// Decodes a SUB r/m32, imm8 (sign-extended) instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the mnemonic instruction.Mnemonic = "sub"; // Check if we have enough bytes for the ModR/M byte if (!Decoder.CanReadByte()) { return false; } // Extract the fields from the ModR/M byte var (mod, reg, rm, destOperand) = ModRMDecoder.ReadModRM(); // Check if we have enough bytes for the immediate value if (!Decoder.CanReadByte()) { return false; } // Read the immediate value as a signed byte and sign-extend it to 32 bits int imm32 = (sbyte) Decoder.ReadByte(); // Format the immediate value - use a consistent approach for all operands // For negative values, show the full 32-bit representation string immStr = imm32 < 0 ? $"0x{(uint)imm32:X8}" : $"0x{(byte)imm32:X2}"; // Set the operands instruction.Operands = $"{destOperand}, {immStr}"; return true; } }