namespace X86Disassembler.X86.Handlers.Sub; /// /// Handler for SUB r16, r/m16 instruction (0x2B with 0x66 prefix) /// public class SubR16Rm16Handler : InstructionHandler { /// /// Initializes a new instance of the SubR16Rm16Handler class /// /// The buffer containing the code to decode /// The instruction decoder that owns this handler /// The length of the buffer public SubR16Rm16Handler(byte[] codeBuffer, InstructionDecoder decoder, int length) : base(codeBuffer, decoder, length) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // Check if the opcode is 0x2B and we have a 0x66 prefix return opcode == 0x2B && Decoder.HasOperandSizeOverridePrefix(); } /// /// Decodes a SUB r16, r/m16 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { // Set the mnemonic instruction.Mnemonic = "sub"; int position = Decoder.GetPosition(); if (position >= Length) { return false; } // Read the ModR/M byte byte modRM = CodeBuffer[position++]; Decoder.SetPosition(position); // Extract the fields from the ModR/M byte byte mod = (byte)((modRM & 0xC0) >> 6); byte reg = (byte)((modRM & 0x38) >> 3); byte rm = (byte)(modRM & 0x07); // Get register name (16-bit) string regName = ModRMDecoder.GetRegisterName(reg, 16); // For mod == 3, both operands are registers if (mod == 3) { string rmRegName = ModRMDecoder.GetRegisterName(rm, 16); instruction.Operands = $"{regName}, {rmRegName}"; } else // Memory operand { // Get the memory operand string (use false for is64Bit) string memOperand = ModRMDecoder.DecodeModRM(mod, rm, false); // Replace "dword" with "word" in the memory operand memOperand = memOperand.Replace("dword", "word"); instruction.Operands = $"{regName}, {memOperand}"; } return true; } }