using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.Add;
///
/// Handler for ADD r/m16, r16 instruction (opcode 01 with 0x66 prefix)
///
public class AddRm16R16Handler : InstructionHandler
{
///
/// Initializes a new instance of the AddRm16R16Handler class
///
/// The instruction decoder that owns this handler
public AddRm16R16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
///
/// Checks if this handler can decode the given opcode
///
/// The opcode to check
/// True if this handler can decode the opcode
public override bool CanHandle(byte opcode)
{
// ADD r/m16, r16 is encoded as 0x01 with 0x66 prefix
if (opcode != 0x01)
{
return false;
}
// Only handle when the operand size prefix is present
return Decoder.HasOperandSizePrefix();
}
///
/// Decodes an ADD r/m16, r16 instruction
///
/// The opcode of the instruction
/// The instruction object to populate
/// True if the instruction was successfully decoded
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the instruction type
instruction.Type = InstructionType.Add;
// Check if we can read the ModR/M byte
if (!Decoder.CanReadByte())
{
return false;
}
// For ADD r/m16, r16 (0x01 with 0x66 prefix):
// - The reg field of the ModR/M byte specifies the source register
// - The r/m field with mod specifies the destination operand (register or memory)
var (_, reg, _, destinationOperand) = ModRMDecoder.ReadModRM16();
// Note: The operand size is already set to 16-bit by the ReadModRM16 method
// Create the source register operand with 16-bit size
var sourceOperand = OperandFactory.CreateRegisterOperand(reg, 16);
// Set the structured operands
instruction.StructuredOperands =
[
destinationOperand,
sourceOperand
];
return true;
}
}