namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic; using X86Disassembler.X86.Operands; /// /// Handler for FDIVR float64 instruction (DC /7) /// public class FdivrFloat64Handler : InstructionHandler { /// /// Initializes a new instance of the FdivrFloat64Handler class /// /// The instruction decoder that owns this handler public FdivrFloat64Handler(InstructionDecoder decoder) : base(decoder) { } /// /// Checks if this handler can decode the given opcode /// /// The opcode to check /// True if this handler can decode the opcode public override bool CanHandle(byte opcode) { // FDIVR is DC /7 if (opcode != 0xDC) return false; if (!Decoder.CanReadByte()) { return false; } // Check if the ModR/M byte has reg field = 7 and mod != 3 (memory operand) byte modRm = Decoder.PeakByte(); byte reg = (byte)((modRm >> 3) & 0x7); byte mod = (byte)((modRm >> 6) & 0x3); // Only handle memory operands (mod != 3) with reg = 7 return reg == 7 && mod != 3; } /// /// Decodes a FDIVR float64 instruction /// /// The opcode of the instruction /// The instruction object to populate /// True if the instruction was successfully decoded public override bool Decode(byte opcode, Instruction instruction) { if (!Decoder.CanReadByte()) { return false; } // Read the ModR/M byte using the specialized FPU method for 64-bit operands var (mod, reg, fpuRm, rawOperand) = ModRMDecoder.ReadModRMFpu64(); // We've already verified reg field is 7 (FDIVR) in CanHandle // and we only handle memory operands (mod != 3) // Set the instruction type instruction.Type = InstructionType.Fdivr; // Set the structured operands - the operand already has the correct size from ReadModRMFpu64 instruction.StructuredOperands = [ rawOperand ]; return true; } }