using X86Disassembler.X86; using X86Disassembler.X86.Operands; namespace X86DisassemblerTests.InstructionTests; /// /// Tests for arithmetic unary operations (DIV, IDIV, MUL, IMUL, NEG, NOT) /// public class ArithmeticUnaryTests { /// /// Tests the DivRm32Handler for decoding DIV r/m32 instruction /// [Fact] public void DivRm32Handler_DecodesDivRm32_Correctly() { // Arrange // DIV ECX (F7 F1) - ModR/M byte F1 = 11 110 001 (mod=3, reg=6, rm=1) // mod=3 means direct register addressing, reg=6 is the DIV opcode extension, rm=1 is ECX byte[] codeBuffer = new byte[] { 0xF7, 0xF1 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal(InstructionType.Div, instruction.Type); // Check that we have one operand Assert.Single(instruction.StructuredOperands); // Check the operand (ECX) var ecxOperand = instruction.StructuredOperands[0]; Assert.IsType(ecxOperand); var registerOperand = (RegisterOperand)ecxOperand; Assert.Equal(RegisterIndex.C, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (ECX) } /// /// Tests the IdivRm32Handler for decoding IDIV r/m32 instruction /// [Fact] public void IdivRm32Handler_DecodesIdivRm32_Correctly() { // Arrange // IDIV ECX (F7 F9) - ModR/M byte F9 = 11 111 001 (mod=3, reg=7, rm=1) // mod=3 means direct register addressing, reg=7 is the IDIV opcode extension, rm=1 is ECX byte[] codeBuffer = new byte[] { 0xF7, 0xF9 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal(InstructionType.IDiv, instruction.Type); // Check that we have one operand Assert.Single(instruction.StructuredOperands); // Check the operand (ECX) var ecxOperand = instruction.StructuredOperands[0]; Assert.IsType(ecxOperand); var registerOperand = (RegisterOperand)ecxOperand; Assert.Equal(RegisterIndex.C, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (ECX) } /// /// Tests the MulRm32Handler for decoding MUL r/m32 instruction /// [Fact] public void MulRm32Handler_DecodesMulRm32_Correctly() { // Arrange // MUL ECX (F7 E1) - ModR/M byte E1 = 11 100 001 (mod=3, reg=4, rm=1) // mod=3 means direct register addressing, reg=4 is the MUL opcode extension, rm=1 is ECX byte[] codeBuffer = new byte[] { 0xF7, 0xE1 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal(InstructionType.Mul, instruction.Type); // Check that we have one operand Assert.Single(instruction.StructuredOperands); // Check the operand (ECX) var ecxOperand = instruction.StructuredOperands[0]; Assert.IsType(ecxOperand); var registerOperand = (RegisterOperand)ecxOperand; Assert.Equal(RegisterIndex.C, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (ECX) } /// /// Tests the ImulRm32Handler for decoding IMUL r/m32 instruction /// [Fact] public void ImulRm32Handler_DecodesImulRm32_Correctly() { // Arrange // IMUL ECX (F7 E9) - ModR/M byte E9 = 11 101 001 (mod=3, reg=5, rm=1) // mod=3 means direct register addressing, reg=5 is the IMUL opcode extension, rm=1 is ECX byte[] codeBuffer = new byte[] { 0xF7, 0xE9 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal(InstructionType.IMul, instruction.Type); // Check that we have one operand Assert.Single(instruction.StructuredOperands); // Check the operand (ECX) var ecxOperand = instruction.StructuredOperands[0]; Assert.IsType(ecxOperand); var registerOperand = (RegisterOperand)ecxOperand; Assert.Equal(RegisterIndex.C, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (ECX) } /// /// Tests the NegRm32Handler for decoding NEG r/m32 instruction /// [Fact] public void NegRm32Handler_DecodesNegRm32_Correctly() { // Arrange // NEG ECX (F7 D9) - ModR/M byte D9 = 11 011 001 (mod=3, reg=3, rm=1) // mod=3 means direct register addressing, reg=3 is the NEG opcode extension, rm=1 is ECX byte[] codeBuffer = new byte[] { 0xF7, 0xD9 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal(InstructionType.Neg, instruction.Type); // Check that we have one operand Assert.Single(instruction.StructuredOperands); // Check the operand (ECX) var ecxOperand = instruction.StructuredOperands[0]; Assert.IsType(ecxOperand); var registerOperand = (RegisterOperand)ecxOperand; Assert.Equal(RegisterIndex.C, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (ECX) } /// /// Tests the NotRm32Handler for decoding NOT r/m32 instruction /// [Fact] public void NotRm32Handler_DecodesNotRm32_Correctly() { // Arrange // NOT ECX (F7 D1) - ModR/M byte D1 = 11 010 001 (mod=3, reg=2, rm=1) // mod=3 means direct register addressing, reg=2 is the NOT opcode extension, rm=1 is ECX byte[] codeBuffer = new byte[] { 0xF7, 0xD1 }; var decoder = new InstructionDecoder(codeBuffer, codeBuffer.Length); // Act var instruction = decoder.DecodeInstruction(); // Assert Assert.NotNull(instruction); Assert.Equal(InstructionType.Not, instruction.Type); // Check that we have one operand Assert.Single(instruction.StructuredOperands); // Check the operand (ECX) var ecxOperand = instruction.StructuredOperands[0]; Assert.IsType(ecxOperand); var registerOperand = (RegisterOperand)ecxOperand; Assert.Equal(RegisterIndex.C, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (ECX) } }