namespace X86Disassembler.X86;
using Operands;
///
/// Handles decoding of ModR/M bytes in x86 instructions
///
public class ModRMDecoder
{
// ModR/M byte masks
private const byte MOD_MASK = 0xC0; // 11000000b
private const byte REG_MASK = 0x38; // 00111000b
private const byte RM_MASK = 0x07; // 00000111b
// SIB byte masks
private const byte SIB_SCALE_MASK = 0xC0; // 11000000b
private const byte SIB_INDEX_MASK = 0x38; // 00111000b
private const byte SIB_BASE_MASK = 0x07; // 00000111b
// Register names for different sizes
private static readonly string[] RegisterNames16 = {"ax", "cx", "dx", "bx", "sp", "bp", "si", "di"};
private static readonly string[] RegisterNames32 = {"eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi"};
// The instruction decoder that owns this ModRM decoder
private readonly InstructionDecoder _decoder;
///
/// Initializes a new instance of the ModRMDecoder class
///
/// The instruction decoder that owns this ModRM decoder
public ModRMDecoder(InstructionDecoder decoder)
{
_decoder = decoder;
}
///
/// Maps the register index from the ModR/M byte to the RegisterIndex enum value
///
/// The register index from the ModR/M byte (0-7)
/// The corresponding RegisterIndex enum value
private RegisterIndex MapModRMToRegisterIndex(int modRMRegIndex)
{
// The mapping from ModR/M register index to RegisterIndex enum is:
// 0 -> A (EAX)
// 1 -> C (ECX)
// 2 -> D (EDX)
// 3 -> B (EBX)
// 4 -> Sp (ESP)
// 5 -> Bp (EBP)
// 6 -> Si (ESI)
// 7 -> Di (EDI)
return modRMRegIndex switch
{
0 => RegisterIndex.A, // EAX
1 => RegisterIndex.C, // ECX
2 => RegisterIndex.D, // EDX
3 => RegisterIndex.B, // EBX
4 => RegisterIndex.Sp, // ESP
5 => RegisterIndex.Bp, // EBP
6 => RegisterIndex.Si, // ESI
7 => RegisterIndex.Di, // EDI
_ => RegisterIndex.A // Default to EAX
};
}
///
/// Maps the register index from the ModR/M byte to the RegisterIndex8 enum value
///
/// The register index from the ModR/M byte (0-7)
/// The corresponding RegisterIndex8 enum value
private RegisterIndex8 MapModRMToRegisterIndex8(int modRMRegIndex)
{
// The mapping from ModR/M register index to RegisterIndex8 enum is direct:
// 0 -> AL, 1 -> CL, 2 -> DL, 3 -> BL, 4 -> AH, 5 -> CH, 6 -> DH, 7 -> BH
return (RegisterIndex8)modRMRegIndex;
}
///
/// Decodes a ModR/M byte to get the operand
///
/// The mod field (2 bits)
/// The r/m field as RegisterIndex
/// True if the operand is 64-bit
/// The operand object
public Operand DecodeModRM(byte mod, RegisterIndex rmIndex, bool is64Bit)
{
int operandSize = is64Bit ? 64 : 32;
switch (mod)
{
case 0: // [reg] or disp32
// Special case: [EBP] is encoded as disp32 with no base register
if (rmIndex == RegisterIndex.Bp) // disp32 (was EBP/BP)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateDirectMemoryOperand(0, operandSize);
}
// Special case: [ESP] is encoded with SIB byte
if (rmIndex == RegisterIndex.Sp) // SIB (was ESP/SP)
{
// Handle SIB byte
if (_decoder.CanReadByte())
{
byte sib = _decoder.ReadByte();
return DecodeSIB(sib, 0, is64Bit);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
}
// Regular case: [reg]
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
case 1: // [reg + disp8]
if (rmIndex == RegisterIndex.Sp) // SIB + disp8 (ESP/SP)
{
// Handle SIB byte
if (_decoder.CanReadByte())
{
byte sib = _decoder.ReadByte();
sbyte disp8 = (sbyte)(_decoder.CanReadByte() ? _decoder.ReadByte() : 0);
return DecodeSIB(sib, (uint)disp8, is64Bit);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
}
else
{
if (_decoder.CanReadByte())
{
sbyte disp8 = (sbyte)_decoder.ReadByte();
// For EBP (BP), always create a displacement memory operand, even if displacement is 0
// This is because [EBP] with no displacement is encoded as [EBP+0]
if (disp8 == 0 && rmIndex != RegisterIndex.Bp)
{
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, disp8, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
case 2: // [reg + disp32]
if (rmIndex == RegisterIndex.Sp) // SIB + disp32 (ESP/SP)
{
// Handle SIB byte
if (_decoder.CanReadUInt())
{
byte sib = _decoder.ReadByte();
uint disp32 = _decoder.ReadUInt32();
return DecodeSIB(sib, disp32, is64Bit);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
}
else
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
// For EBP (BP), always create a displacement memory operand, even if displacement is 0
// This is because [EBP] with no displacement is encoded as [EBP+disp]
if (rmIndex == RegisterIndex.Bp)
{
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (int)disp32, operandSize);
}
// Only show displacement if it's not zero
if (disp32 == 0)
{
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (int)disp32, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
case 3: // reg (direct register access)
return OperandFactory.CreateRegisterOperand(rmIndex, operandSize);
default:
// Fallback for invalid mod value
return OperandFactory.CreateRegisterOperand(RegisterIndex.A, operandSize);
}
}
///
/// Peaks a ModR/M byte and returns the raw field values, without advancing position
///
/// A tuple containing the raw mod, reg, and rm fields from the ModR/M byte
public byte PeakModRMReg()
{
if (!_decoder.CanReadByte())
{
return 0;
}
byte modRM = _decoder.PeakByte();
// Extract fields from ModR/M byte
byte regIndex = (byte)((modRM & REG_MASK) >> 3); // Middle 3 bits (bits 3-5)
return regIndex;
}
///
/// Reads a ModR/M byte and returns the raw field values
///
/// A tuple containing the raw mod, reg, and rm fields from the ModR/M byte
public (byte mod, byte reg, byte rm) ReadModRMRaw()
{
if (!_decoder.CanReadByte())
{
return (0, 0, 0);
}
byte modRM = _decoder.ReadByte();
// Extract fields from ModR/M byte
byte mod = (byte)((modRM & MOD_MASK) >> 6); // Top 2 bits (bits 6-7)
byte regIndex = (byte)((modRM & REG_MASK) >> 3); // Middle 3 bits (bits 3-5)
byte rmIndex = (byte)(modRM & RM_MASK); // Bottom 3 bits (bits 0-2)
return (mod, regIndex, rmIndex);
}
///
/// Reads and decodes a ModR/M byte for standard 32-bit operands
///
/// A tuple containing the mod, reg, rm fields and the decoded operand
public (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRM()
{
return ReadModRMInternal(false);
}
///
/// Reads and decodes a ModR/M byte for 64-bit operands
///
/// A tuple containing the mod, reg, rm fields and the decoded operand
public (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRM64()
{
return ReadModRMInternal(true);
}
///
/// Reads and decodes a ModR/M byte for 8-bit operands
///
/// A tuple containing the mod, reg, rm fields and the decoded operand
public (byte mod, RegisterIndex8 reg, RegisterIndex8 rm, Operand operand) ReadModRM8()
{
return ReadModRM8Internal();
}
///
/// Internal implementation for reading and decoding a ModR/M byte for standard 32-bit or 64-bit operands
///
/// True if the operand is 64-bit
/// A tuple containing the mod, reg, rm fields and the decoded operand
private (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRMInternal(bool is64Bit)
{
if (!_decoder.CanReadByte())
{
return (0, RegisterIndex.A, RegisterIndex.A, OperandFactory.CreateRegisterOperand(RegisterIndex.A, is64Bit ? 64 : 32));
}
byte modRM = _decoder.ReadByte();
// Extract fields from ModR/M byte
byte mod = (byte)((modRM & MOD_MASK) >> 6);
byte regIndex = (byte)((modRM & REG_MASK) >> 3);
byte rmIndex = (byte)(modRM & RM_MASK);
// Map the ModR/M register indices to RegisterIndex enum values
RegisterIndex reg = MapModRMToRegisterIndex(regIndex);
RegisterIndex rm = MapModRMToRegisterIndex(rmIndex);
// Create the operand based on the mod and rm fields
Operand operand = DecodeModRM(mod, rm, is64Bit);
return (mod, reg, rm, operand);
}
///
/// Internal implementation for reading and decoding a ModR/M byte for 8-bit operands
///
/// A tuple containing the mod, reg, rm fields and the decoded operand
private (byte mod, RegisterIndex8 reg, RegisterIndex8 rm, Operand operand) ReadModRM8Internal()
{
if (!_decoder.CanReadByte())
{
return (0, RegisterIndex8.AL, RegisterIndex8.AL, OperandFactory.CreateRegisterOperand8(RegisterIndex8.AL));
}
byte modRM = _decoder.ReadByte();
// Extract fields from ModR/M byte
byte mod = (byte)((modRM & MOD_MASK) >> 6);
byte regIndex = (byte)((modRM & REG_MASK) >> 3);
byte rmIndex = (byte)(modRM & RM_MASK);
// Map the ModR/M register indices to RegisterIndex8 enum values
RegisterIndex8 reg = MapModRMToRegisterIndex8(regIndex);
RegisterIndex8 rm = MapModRMToRegisterIndex8(rmIndex);
// Create the operand based on the mod and rm fields
Operand operand;
if (mod == 3) // Register operand
{
// For register operands, create an 8-bit register operand
operand = OperandFactory.CreateRegisterOperand8(rm);
}
else // Memory operand
{
// For memory operands, we need to map the RegisterIndex8 to RegisterIndex for base registers
RegisterIndex rmRegIndex = MapRegister8ToBaseRegister(rm);
operand = DecodeModRM(mod, rmRegIndex, false);
operand.Size = 8; // Set size to 8 bits
}
return (mod, reg, rm, operand);
}
///
/// Decodes a SIB byte
///
/// The SIB byte
/// The displacement value
/// True if the operand is 64-bit
/// The decoded SIB operand
private Operand DecodeSIB(byte sib, uint displacement, bool is64Bit)
{
int operandSize = is64Bit ? 64 : 32;
// Extract fields from SIB byte
byte scale = (byte)((sib & SIB_SCALE_MASK) >> 6);
int indexIndex = (sib & SIB_INDEX_MASK) >> 3;
int baseIndex = sib & SIB_BASE_MASK;
// Map the SIB register indices to RegisterIndex enum values
RegisterIndex index = MapModRMToRegisterIndex(indexIndex);
RegisterIndex @base = MapModRMToRegisterIndex(baseIndex);
// Special case: ESP/SP (4) in index field means no index register
if (index == RegisterIndex.Sp)
{
// Special case: EBP/BP (5) in base field with no displacement means disp32 only
if (@base == RegisterIndex.Bp && displacement == 0)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
// When both index is ESP (no index) and base is EBP with disp32,
// this is a direct memory reference [disp32]
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateDirectMemoryOperand(0, operandSize);
}
// When index is ESP (no index), we just have a base register with optional displacement
if (displacement == 0)
{
return OperandFactory.CreateBaseRegisterMemoryOperand(@base, operandSize);
}
return OperandFactory.CreateDisplacementMemoryOperand(@base, (int)displacement, operandSize);
}
// Special case: EBP/BP (5) in base field with no displacement means disp32 only
if (@base == RegisterIndex.Bp && displacement == 0)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
int scaleValue = 1 << scale; // 1, 2, 4, or 8
// If we have a direct memory reference with a specific displacement,
// use a direct memory operand instead of a scaled index memory operand
if (disp32 > 0 && index == RegisterIndex.Sp)
{
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Create a scaled index memory operand with displacement but no base register
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
scaleValue,
null,
(int)disp32,
operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
1 << scale,
null,
0,
operandSize);
}
// Normal case with base and index registers
int scaleFactor = 1 << scale; // 1, 2, 4, or 8
// Create a scaled index memory operand
return OperandFactory.CreateScaledIndexMemoryOperand(
index,
scaleFactor,
@base,
(int)displacement,
operandSize);
}
///
/// Gets the register name based on the register index and size
///
/// The register index as RegisterIndex enum
/// The register size (16 or 32 bits)
/// The register name
public static string GetRegisterName(RegisterIndex regIndex, int size)
{
return size switch
{
16 => RegisterNames16[(int)regIndex],
32 => RegisterNames32[(int)regIndex],
64 => RegisterNames32[(int)regIndex], // For now, reuse 32-bit names for 64-bit
_ => "unknown"
};
}
///
/// Gets the 8-bit register name based on the RegisterIndex8 enum value
///
/// The register index as RegisterIndex8 enum
/// The 8-bit register name
public static string GetRegisterName(RegisterIndex8 regIndex8)
{
return regIndex8.ToString().ToLower();
}
///
/// Maps a RegisterIndex8 enum value to the corresponding RegisterIndex enum value for base registers
///
/// The RegisterIndex8 enum value
/// The corresponding RegisterIndex enum value
private RegisterIndex MapRegister8ToBaseRegister(RegisterIndex8 regIndex8)
{
// Map 8-bit register indices to their corresponding 32-bit register indices
return regIndex8 switch
{
RegisterIndex8.AL => RegisterIndex.A,
RegisterIndex8.CL => RegisterIndex.C,
RegisterIndex8.DL => RegisterIndex.D,
RegisterIndex8.BL => RegisterIndex.B,
RegisterIndex8.AH => RegisterIndex.A,
RegisterIndex8.CH => RegisterIndex.C,
RegisterIndex8.DH => RegisterIndex.D,
RegisterIndex8.BH => RegisterIndex.B,
_ => RegisterIndex.A // Default to EAX
};
}
}