using X86Disassembler.X86; using X86Disassembler.X86.Operands; namespace X86DisassemblerTests.InstructionTests; /// /// Tests for TEST instruction handlers /// public class TestInstructionHandlerTests { /// /// Tests the TestRegMemHandler for decoding TEST r/m32, r32 instructions /// [Fact] public void TestRegMemHandler_DecodesTestR32R32_Correctly() { // Arrange // TEST ECX, EAX (85 C1) - ModR/M byte C1 = 11 000 001 (mod=3, reg=0, rm=1) // mod=3 means direct register addressing, reg=0 is EAX, rm=1 is ECX byte[] codeBuffer = new byte[] { 0x85, 0xC1 }; var disassembler = new Disassembler(codeBuffer, 0); // Act var instructions = disassembler.Disassemble(); // Assert Assert.Single(instructions); var instruction = instructions[0]; Assert.NotNull(instruction); Assert.Equal(InstructionType.Test, instruction.Type); // Check that we have two operands Assert.Equal(2, instruction.StructuredOperands.Count); // Check the first operand (ECX) var ecxOperand = instruction.StructuredOperands[0]; Assert.IsType(ecxOperand); var registerOperand1 = (RegisterOperand)ecxOperand; Assert.Equal(RegisterIndex.C, registerOperand1.Register); Assert.Equal(32, registerOperand1.Size); // Validate that it's a 32-bit register (ECX) // Check the second operand (EAX) var eaxOperand = instruction.StructuredOperands[1]; Assert.IsType(eaxOperand); var registerOperand2 = (RegisterOperand)eaxOperand; Assert.Equal(RegisterIndex.A, registerOperand2.Register); Assert.Equal(32, registerOperand2.Size); // Validate that it's a 32-bit register (EAX) } /// /// Tests the TestRegMem8Handler for decoding TEST r/m8, r8 instructions /// [Fact] public void TestRegMem8Handler_DecodesTestR8R8_Correctly() { // Arrange // TEST CL, AL (84 C1) - ModR/M byte C1 = 11 000 001 (mod=3, reg=0, rm=1) // mod=3 means direct register addressing, reg=0 is AL, rm=1 is CL byte[] codeBuffer = new byte[] { 0x84, 0xC1 }; var disassembler = new Disassembler(codeBuffer, 0); // Act var instructions = disassembler.Disassemble(); // Assert Assert.Single(instructions); var instruction = instructions[0]; Assert.NotNull(instruction); Assert.Equal(InstructionType.Test, instruction.Type); // Check that we have two operands Assert.Equal(2, instruction.StructuredOperands.Count); // Check the first operand (CL) var clOperand = instruction.StructuredOperands[0]; Assert.IsType(clOperand); var registerOperand1 = (RegisterOperand)clOperand; Assert.Equal(RegisterIndex.C, registerOperand1.Register); Assert.Equal(8, registerOperand1.Size); // Validate that it's an 8-bit register (CL) // Check the second operand (AL) var alOperand = instruction.StructuredOperands[1]; Assert.IsType(alOperand); var registerOperand2 = (RegisterOperand)alOperand; Assert.Equal(RegisterIndex.A, registerOperand2.Register); Assert.Equal(8, registerOperand2.Size); // Validate that it's an 8-bit register (AL) } /// /// Tests the TestAlImmHandler for decoding TEST AL, imm8 instructions /// [Fact] public void TestAlImmHandler_DecodesTestAlImm8_Correctly() { // Arrange // TEST AL, 0x42 (A8 42) byte[] codeBuffer = new byte[] { 0xA8, 0x42 }; var disassembler = new Disassembler(codeBuffer, 0); // Act var instructions = disassembler.Disassemble(); // Assert Assert.Single(instructions); var instruction = instructions[0]; Assert.NotNull(instruction); Assert.Equal(InstructionType.Test, instruction.Type); // Check that we have two operands Assert.Equal(2, instruction.StructuredOperands.Count); // Check the first operand (AL) var alOperand = instruction.StructuredOperands[0]; Assert.IsType(alOperand); var registerOperand = (RegisterOperand)alOperand; Assert.Equal(RegisterIndex.A, registerOperand.Register); Assert.Equal(8, registerOperand.Size); // Validate that it's an 8-bit register (AL) // Check the second operand (immediate value) var immOperand = instruction.StructuredOperands[1]; Assert.IsType(immOperand); var immediateOperand = (ImmediateOperand)immOperand; Assert.Equal(0x42U, immediateOperand.Value); Assert.Equal(8, immediateOperand.Size); // Validate that it's an 8-bit immediate } /// /// Tests the TestEaxImmHandler for decoding TEST EAX, imm32 instructions /// [Fact] public void TestEaxImmHandler_DecodesTestEaxImm32_Correctly() { // Arrange // TEST EAX, 0x12345678 (A9 78 56 34 12) byte[] codeBuffer = new byte[] { 0xA9, 0x78, 0x56, 0x34, 0x12 }; var disassembler = new Disassembler(codeBuffer, 0); // Act var instructions = disassembler.Disassemble(); // Assert Assert.Single(instructions); var instruction = instructions[0]; Assert.NotNull(instruction); Assert.Equal(InstructionType.Test, instruction.Type); // Check that we have two operands Assert.Equal(2, instruction.StructuredOperands.Count); // Check the first operand (EAX) var eaxOperand = instruction.StructuredOperands[0]; Assert.IsType(eaxOperand); var registerOperand = (RegisterOperand)eaxOperand; Assert.Equal(RegisterIndex.A, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (EAX) // Check the second operand (immediate value) var immOperand = instruction.StructuredOperands[1]; Assert.IsType(immOperand); var immediateOperand = (ImmediateOperand)immOperand; Assert.Equal(0x12345678U, immediateOperand.Value); Assert.Equal(32, immediateOperand.Size); // Validate that it's a 32-bit immediate } /// /// Tests the TestImmWithRm8Handler for decoding TEST r/m8, imm8 instructions /// [Fact] public void TestImmWithRm8Handler_DecodesTestRm8Imm8_Correctly() { // Arrange // TEST AH, 0x01 (F6 C4 01) - ModR/M byte C4 = 11 000 100 (mod=3, reg=0, rm=4) // mod=3 means direct register addressing, reg=0 indicates TEST operation, rm=4 is AH byte[] codeBuffer = new byte[] { 0xF6, 0xC4, 0x01 }; var disassembler = new Disassembler(codeBuffer, 0); // Act var instructions = disassembler.Disassemble(); // Assert Assert.Single(instructions); var instruction = instructions[0]; Assert.NotNull(instruction); Assert.Equal(InstructionType.Test, instruction.Type); // Check that we have two operands Assert.Equal(2, instruction.StructuredOperands.Count); // Check the first operand (AH) var ahOperand = instruction.StructuredOperands[0]; Assert.IsType(ahOperand); var registerOperand = (RegisterOperand)ahOperand; Assert.Equal(RegisterIndex.A, registerOperand.Register); Assert.Equal(8, registerOperand.Size); // Validate that it's an 8-bit register (AH) // Check the second operand (immediate value) var immOperand = instruction.StructuredOperands[1]; Assert.IsType(immOperand); var immediateOperand = (ImmediateOperand)immOperand; Assert.Equal(0x01U, immediateOperand.Value); Assert.Equal(8, immediateOperand.Size); // Validate that it's an 8-bit immediate } /// /// Tests the TestImmWithRm32Handler for decoding TEST r/m32, imm32 instructions /// [Fact] public void TestImmWithRm32Handler_DecodesTestRm32Imm32_Correctly() { // Arrange // TEST EDI, 0x12345678 (F7 C7 78 56 34 12) - ModR/M byte C7 = 11 000 111 (mod=3, reg=0, rm=7) // mod=3 means direct register addressing, reg=0 indicates TEST operation, rm=7 is EDI byte[] codeBuffer = new byte[] { 0xF7, 0xC7, 0x78, 0x56, 0x34, 0x12 }; var disassembler = new Disassembler(codeBuffer, 0); // Act var instructions = disassembler.Disassemble(); // Assert Assert.Single(instructions); var instruction = instructions[0]; Assert.NotNull(instruction); Assert.Equal(InstructionType.Test, instruction.Type); // Check that we have two operands Assert.Equal(2, instruction.StructuredOperands.Count); // Check the first operand (EDI) var ediOperand = instruction.StructuredOperands[0]; Assert.IsType(ediOperand); var registerOperand = (RegisterOperand)ediOperand; Assert.Equal(RegisterIndex.Di, registerOperand.Register); Assert.Equal(32, registerOperand.Size); // Validate that it's a 32-bit register (EDI) // Check the second operand (immediate value) var immOperand = instruction.StructuredOperands[1]; Assert.IsType(immOperand); var immediateOperand = (ImmediateOperand)immOperand; Assert.Equal(0x12345678U, immediateOperand.Value); Assert.Equal(32, immediateOperand.Size); // Validate that it's a 32-bit immediate } }