0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-19 11:51:17 +03:00
2025-04-17 20:06:18 +03:00

326 lines
14 KiB
C#

namespace X86Disassembler.X86;
using Operands;
/// <summary>
/// Handles decoding of ModR/M bytes in x86 instructions
/// </summary>
public class ModRMDecoder
{
// The instruction decoder that owns this ModRM decoder
private readonly InstructionDecoder _decoder;
// The SIB decoder for handling SIB bytes
private readonly SIBDecoder _sibDecoder;
/// <summary>
/// Initializes a new instance of the ModRMDecoder class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this ModRM decoder</param>
public ModRMDecoder(InstructionDecoder decoder)
{
_decoder = decoder;
_sibDecoder = new SIBDecoder(decoder);
}
/// <summary>
/// Decodes a ModR/M byte to get the operand
/// </summary>
/// <param name="mod">The mod field (2 bits)</param>
/// <param name="rmIndex">The r/m field as RegisterIndex</param>
/// <param name="is64Bit">True if the operand is 64-bit</param>
/// <returns>The operand object</returns>
public Operand DecodeModRM(byte mod, RegisterIndex rmIndex, bool is64Bit) => DecodeModRMInternal(mod, rmIndex, is64Bit ? 64 : 32);
/// <summary>
/// Decodes a ModR/M byte to get an 8-bit operand
/// </summary>
/// <param name="mod">The mod field (2 bits)</param>
/// <param name="rmIndex">The r/m field as RegisterIndex</param>
/// <returns>The 8-bit operand object</returns>
public Operand DecodeModRM8(byte mod, RegisterIndex rmIndex) => DecodeModRMInternal(mod, rmIndex, 8);
/// <summary>
/// Internal implementation for decoding a ModR/M byte to get an operand with specific size
/// </summary>
/// <param name="mod">The mod field (2 bits)</param>
/// <param name="rmIndex">The r/m field as RegisterIndex</param>
/// <param name="operandSize">The size of the operand in bits (8, 16, 32, or 64)</param>
/// <returns>The operand object</returns>
private Operand DecodeModRMInternal(byte mod, RegisterIndex rmIndex, int operandSize)
{
switch (mod)
{
case 0: // [reg] or disp32
// Special case: [EBP] is encoded as disp32 with no base register
// In x86 encoding, when Mod=00 and R/M=101 (which corresponds to EBP), this doesn't actually refer to [EBP] as you might expect.
// Instead, it's a special case that indicates a 32-bit displacement-only addressing mode (effectively [disp32] with no base register).
if (rmIndex == RegisterIndex.Bp) // disp32 (was EBP/BP)
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
return OperandFactory.CreateDirectMemoryOperand(disp32, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateDirectMemoryOperand(0, operandSize);
}
// Special case: [ESP] is encoded with SIB byte
// In x86 encoding, when Mod=00 and R/M=100 (which corresponds to ESP), this doesn't actually refer to [ESP] directly.
// Instead, it indicates that a SIB (Scale-Index-Base) byte follows, which provides additional addressing information.
// This special case exists because ESP cannot be used as an index register in the standard addressing modes.
if (rmIndex == RegisterIndex.Sp) // SIB (was ESP/SP)
{
// Handle SIB byte
if (_decoder.CanReadByte())
{
byte sib = _decoder.ReadByte();
return _sibDecoder.DecodeSIB(sib, 0, operandSize, mod);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
}
// Regular case: [reg]
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
case 1: // [reg + disp8]
if (rmIndex == RegisterIndex.Sp) // SIB + disp8 (ESP/SP)
{
// Handle SIB byte
if (_decoder.CanReadByte())
{
byte sib = _decoder.ReadByte();
sbyte disp8 = (sbyte)(_decoder.CanReadByte() ? _decoder.ReadByte() : 0);
return _sibDecoder.DecodeSIB(sib, (uint)disp8, operandSize, mod);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
}
else
{
if (_decoder.CanReadByte())
{
sbyte disp8 = (sbyte)_decoder.ReadByte();
// Always create a displacement memory operand for mod=1, even if displacement is 0
// This ensures we show exactly what's encoded in the ModR/M byte
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, disp8, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
case 2: // [reg + disp32]
if (rmIndex == RegisterIndex.Sp) // SIB + disp32 (ESP/SP)
{
// Handle SIB byte
if (_decoder.CanReadUInt())
{
byte sib = _decoder.ReadByte();
uint disp32 = _decoder.ReadUInt32();
return _sibDecoder.DecodeSIB(sib, disp32, operandSize, mod);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(RegisterIndex.Sp, operandSize);
}
else
{
if (_decoder.CanReadUInt())
{
uint disp32 = _decoder.ReadUInt32();
// For EBP (BP), always create a displacement memory operand, even if displacement is 0
// This is because [EBP] with no displacement is encoded as [EBP+disp]
if (rmIndex == RegisterIndex.Bp)
{
// Cast to long to preserve the unsigned value for large displacements
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (long)disp32, operandSize);
}
// Always include the displacement, even if it's zero, to match the encoding
// Cast to long to preserve the unsigned value for large displacements
return OperandFactory.CreateDisplacementMemoryOperand(rmIndex, (long)disp32, operandSize);
}
// Fallback for incomplete data
return OperandFactory.CreateBaseRegisterMemoryOperand(rmIndex, operandSize);
}
case 3: // reg (direct register access)
return OperandFactory.CreateRegisterOperand(rmIndex, operandSize);
default:
// Fallback for invalid mod value
return OperandFactory.CreateRegisterOperand(RegisterIndex.A, operandSize);
}
}
/// <summary>
/// Peaks a ModR/M byte and returns the raw field values, without advancing position
/// </summary>
/// <returns>A tuple containing the raw mod, reg, and rm fields from the ModR/M byte</returns>
public byte PeakModRMReg()
{
if (!_decoder.CanReadByte())
{
return 0;
}
byte modRM = _decoder.PeakByte();
// Extract fields from ModR/M byte
byte regIndex = (byte)((modRM & Constants.REG_MASK) >> 3); // Middle 3 bits (bits 3-5)
return regIndex;
}
/// <summary>
/// Extracts modRM reg field
/// </summary>
/// <returns>A reg from the ModR/M byte</returns>
public static byte GetRegFromModRM(byte modRm)
{
// Extract fields from ModR/M byte
byte regIndex = (byte)((modRm & Constants.REG_MASK) >> 3); // Middle 3 bits (bits 3-5)
return regIndex;
}
/// <summary>
/// Reads and decodes a ModR/M byte for standard 32-bit operands
/// </summary>
/// <returns>A tuple containing the mod, reg, rm fields and the decoded operand</returns>
public (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRM() => ReadModRMInternal(false);
/// <summary>
/// Reads and decodes a ModR/M byte for 64-bit operands
/// </summary>
/// <returns>A tuple containing the mod, reg, rm fields and the decoded operand</returns>
public (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRM64() => ReadModRMInternal(true);
/// <summary>
/// Reads and decodes a ModR/M byte for 8-bit operands
/// </summary>
/// <returns>A tuple containing the mod, reg, rm fields and the decoded operand</returns>
public (byte mod, RegisterIndex8 reg, RegisterIndex8 rm, Operand operand) ReadModRM8() => ReadModRM8Internal();
/// <summary>
/// Reads and decodes a ModR/M byte for 16-bit operands
/// </summary>
/// <returns>A tuple containing the mod, reg, rm fields and the decoded operand</returns>
public (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRM16()
{
var (mod, reg, rm, operand) = ReadModRMInternal(false);
// Create a new operand with 16-bit size using the appropriate factory method
if (operand is RegisterOperand registerOperand)
{
// For register operands, create a new 16-bit register operand
operand = OperandFactory.CreateRegisterOperand(registerOperand.Register, 16);
}
else if (operand is MemoryOperand)
{
// For memory operands, create a new 16-bit memory operand with the same properties
// This depends on the specific type of memory operand
if (operand is DirectMemoryOperand directMemory)
{
operand = OperandFactory.CreateDirectMemoryOperand16(directMemory.Address);
}
else if (operand is BaseRegisterMemoryOperand baseRegMemory)
{
operand = OperandFactory.CreateBaseRegisterMemoryOperand16(baseRegMemory.BaseRegister);
}
else if (operand is DisplacementMemoryOperand dispMemory)
{
operand = OperandFactory.CreateDisplacementMemoryOperand16(dispMemory.BaseRegister, dispMemory.Displacement);
}
else if (operand is ScaledIndexMemoryOperand scaledMemory)
{
operand = OperandFactory.CreateScaledIndexMemoryOperand16(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement);
}
}
return (mod, reg, rm, operand);
}
/// <summary>
/// Internal implementation for reading and decoding a ModR/M byte for standard 32-bit or 64-bit operands
/// </summary>
/// <param name="is64Bit">True if the operand is 64-bit</param>
/// <returns>A tuple containing the mod, reg, rm fields and the decoded operand</returns>
private (byte mod, RegisterIndex reg, RegisterIndex rm, Operand operand) ReadModRMInternal(bool is64Bit)
{
if (!_decoder.CanReadByte())
{
return (0, RegisterIndex.A, RegisterIndex.A, OperandFactory.CreateRegisterOperand(RegisterIndex.A, is64Bit ? 64 : 32));
}
byte modRM = _decoder.ReadByte();
// Extract fields from ModR/M byte
byte mod = (byte)((modRM & Constants.MOD_MASK) >> 6);
byte regIndex = (byte)((modRM & Constants.REG_MASK) >> 3);
byte rmIndex = (byte)(modRM & Constants.RM_MASK);
// Map the ModR/M register indices to RegisterIndex enum values
RegisterIndex reg = RegisterMapper.MapModRMToRegisterIndex(regIndex);
RegisterIndex rm = RegisterMapper.MapModRMToRegisterIndex(rmIndex);
// Create the operand based on the mod and rm fields
Operand operand = DecodeModRM(mod, rm, is64Bit);
return (mod, reg, rm, operand);
}
/// <summary>
/// Internal implementation for reading and decoding a ModR/M byte for 8-bit operands
/// </summary>
/// <returns>A tuple containing the mod, reg, rm fields and the decoded operand</returns>
private (byte mod, RegisterIndex8 reg, RegisterIndex8 rm, Operand operand) ReadModRM8Internal()
{
if (!_decoder.CanReadByte())
{
return (0, RegisterIndex8.AL, RegisterIndex8.AL, OperandFactory.CreateRegisterOperand8(RegisterIndex8.AL));
}
byte modRM = _decoder.ReadByte();
// Extract fields from ModR/M byte
byte mod = (byte)((modRM & Constants.MOD_MASK) >> 6);
byte regIndex = (byte)((modRM & Constants.REG_MASK) >> 3);
byte rmIndex = (byte)(modRM & Constants.RM_MASK);
// Map the ModR/M register indices to RegisterIndex8 enum values
RegisterIndex8 reg = RegisterMapper.MapModRMToRegisterIndex8(regIndex);
RegisterIndex8 rm = RegisterMapper.MapModRMToRegisterIndex8(rmIndex);
// Create the operand based on the mod and rm fields
Operand operand;
if (mod == 3) // Register operand
{
// For register operands, create an 8-bit register operand
operand = OperandFactory.CreateRegisterOperand8(rm);
}
else // Memory operand
{
// For memory operands, we need to map the RegisterIndex8 to RegisterIndex for base registers
// The rmIndex is the raw value from the ModR/M byte, not the mapped RegisterIndex8
// This is important because we need to check if it's 4 (ESP) for SIB byte
RegisterIndex rmRegIndex = RegisterMapper.MapModRMToRegisterIndex(rmIndex);
// Use the DecodeModRM8 method to get an 8-bit memory operand
operand = DecodeModRM8(mod, rmRegIndex);
}
return (mod, reg, rm, operand);
}
}