#include "legrand.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolLegrand" static const SubGhzBlockConst subghz_protocol_legrand_const = { .te_short = 375, .te_long = 1125, .te_delta = 150, .min_count_bit_for_found = 18, }; struct SubGhzProtocolDecoderLegrand { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; uint32_t te; uint32_t last_data; }; struct SubGhzProtocolEncoderLegrand { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; uint32_t te; }; typedef enum { LegrandDecoderStepReset = 0, LegrandDecoderStepFirstBit, LegrandDecoderStepSaveDuration, LegrandDecoderStepCheckDuration, } LegrandDecoderStep; const SubGhzProtocolDecoder subghz_protocol_legrand_decoder = { .alloc = subghz_protocol_decoder_legrand_alloc, .free = subghz_protocol_decoder_legrand_free, .feed = subghz_protocol_decoder_legrand_feed, .reset = subghz_protocol_decoder_legrand_reset, .get_hash_data = subghz_protocol_decoder_legrand_get_hash_data, .serialize = subghz_protocol_decoder_legrand_serialize, .deserialize = subghz_protocol_decoder_legrand_deserialize, .get_string = subghz_protocol_decoder_legrand_get_string, }; const SubGhzProtocolEncoder subghz_protocol_legrand_encoder = { .alloc = subghz_protocol_encoder_legrand_alloc, .free = subghz_protocol_encoder_legrand_free, .deserialize = subghz_protocol_encoder_legrand_deserialize, .stop = subghz_protocol_encoder_legrand_stop, .yield = subghz_protocol_encoder_legrand_yield, }; const SubGhzProtocol subghz_protocol_legrand = { .name = SUBGHZ_PROTOCOL_LEGRAND_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_legrand_decoder, .encoder = &subghz_protocol_legrand_encoder, }; void* subghz_protocol_encoder_legrand_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderLegrand* instance = malloc(sizeof(SubGhzProtocolEncoderLegrand)); instance->base.protocol = &subghz_protocol_legrand; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = (subghz_protocol_legrand_const.min_count_bit_for_found * 6) * 2 + 2; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_legrand_free(void* context) { furi_assert(context); SubGhzProtocolEncoderLegrand* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderLegrand instance * @return true On success */ static bool subghz_protocol_encoder_legrand_get_upload(SubGhzProtocolEncoderLegrand* instance) { furi_assert(instance); //size_t size_upload = (instance->generic.data_count_bit * 2) + 1; //if(size_upload != instance->encoder.size_upload) { // FURI_LOG_E(TAG, "Invalid data bit count"); // return false; //} size_t index = 0; for(size_t r = 0; r < 5; r++) { // Send sync instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te * 16); // 5728 // Send key data for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { // send bit 1 if(i == instance->generic.data_count_bit) { //Send first bit instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3); } else { // send bit 1 regular instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te); instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3); } } else { // send bit 0 if(i == instance->generic.data_count_bit) { //Send first bit instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te); } else { // send bit 0 regular instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3); instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te); } } } } instance->encoder.size_upload = index; return true; } SubGhzProtocolStatus subghz_protocol_encoder_legrand_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderLegrand* instance = context; SubGhzProtocolStatus ret = SubGhzProtocolStatusError; do { ret = subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_legrand_const.min_count_bit_for_found); if(ret != SubGhzProtocolStatusOk) { break; } if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); ret = SubGhzProtocolStatusErrorParserOthers; break; } if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) { FURI_LOG_E(TAG, "Missing TE"); ret = SubGhzProtocolStatusErrorParserTe; break; } // optional parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); if(!subghz_protocol_encoder_legrand_get_upload(instance)) { ret = SubGhzProtocolStatusErrorEncoderGetUpload; break; } instance->encoder.is_running = true; } while(false); return ret; } void subghz_protocol_encoder_legrand_stop(void* context) { SubGhzProtocolEncoderLegrand* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_legrand_yield(void* context) { SubGhzProtocolEncoderLegrand* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_legrand_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderLegrand* instance = malloc(sizeof(SubGhzProtocolDecoderLegrand)); instance->base.protocol = &subghz_protocol_legrand; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_legrand_free(void* context) { furi_assert(context); SubGhzProtocolDecoderLegrand* instance = context; free(instance); } void subghz_protocol_decoder_legrand_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderLegrand* instance = context; instance->decoder.parser_step = LegrandDecoderStepReset; instance->last_data = 0; } void subghz_protocol_decoder_legrand_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderLegrand* instance = context; switch(instance->decoder.parser_step) { case LegrandDecoderStepReset: if(!level && DURATION_DIFF(duration, subghz_protocol_legrand_const.te_short * 16) < subghz_protocol_legrand_const.te_delta * 8) { // 6000 +- 1200 instance->decoder.parser_step = LegrandDecoderStepFirstBit; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->te = 0; } break; case LegrandDecoderStepFirstBit: if(level) { if(DURATION_DIFF(duration, subghz_protocol_legrand_const.te_short) < subghz_protocol_legrand_const.te_delta) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->te += duration * 4; // long low that is part of sync, then short high } if(DURATION_DIFF(duration, subghz_protocol_legrand_const.te_long) < subghz_protocol_legrand_const.te_delta * 3) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->te += duration / 3 * 4; // short low that is part of sync, then long high } if(instance->decoder.decode_count_bit > 0) { // advance to the next step if either short or long is found instance->decoder.parser_step = LegrandDecoderStepSaveDuration; break; } } instance->decoder.parser_step = LegrandDecoderStepReset; break; case LegrandDecoderStepSaveDuration: if(!level) { instance->decoder.te_last = duration; instance->te += duration; instance->decoder.parser_step = LegrandDecoderStepCheckDuration; break; } instance->decoder.parser_step = LegrandDecoderStepReset; break; case LegrandDecoderStepCheckDuration: if(level) { uint8_t found = 0; if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_legrand_const.te_long) < subghz_protocol_legrand_const.te_delta * 3 && DURATION_DIFF(duration, subghz_protocol_legrand_const.te_short) < subghz_protocol_legrand_const.te_delta) { found = 1; subghz_protocol_blocks_add_bit(&instance->decoder, 0); } if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_legrand_const.te_short) < subghz_protocol_legrand_const.te_delta && DURATION_DIFF(duration, subghz_protocol_legrand_const.te_long) < subghz_protocol_legrand_const.te_delta * 3) { found = 1; subghz_protocol_blocks_add_bit(&instance->decoder, 1); } if(found) { instance->te += duration; if(instance->decoder.decode_count_bit < subghz_protocol_legrand_const.min_count_bit_for_found) { instance->decoder.parser_step = LegrandDecoderStepSaveDuration; break; } // enough bits for a packet found, save it only if there was a previous packet // with the same data if(instance->last_data && (instance->last_data == instance->decoder.decode_data)) { instance->te /= instance->decoder.decode_count_bit * 4; instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) { instance->base.callback(&instance->base, instance->base.context); } } instance->last_data = instance->decoder.decode_data; // fallthrough to reset, the next bit is expected to be a sync // it also takes care of resetting the decoder state } } instance->decoder.parser_step = LegrandDecoderStepReset; break; } } uint8_t subghz_protocol_decoder_legrand_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderLegrand* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_legrand_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderLegrand* instance = context; SubGhzProtocolStatus ret = subghz_block_generic_serialize(&instance->generic, flipper_format, preset); if((ret == SubGhzProtocolStatusOk) && !flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1)) { FURI_LOG_E(TAG, "Unable to add TE"); ret = SubGhzProtocolStatusErrorParserTe; } return ret; } SubGhzProtocolStatus subghz_protocol_decoder_legrand_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderLegrand* instance = context; SubGhzProtocolStatus ret = SubGhzProtocolStatusError; do { ret = subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_legrand_const.min_count_bit_for_found); if(ret != SubGhzProtocolStatusOk) { break; } if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); ret = SubGhzProtocolStatusErrorParserOthers; break; } if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) { FURI_LOG_E(TAG, "Missing TE"); ret = SubGhzProtocolStatusErrorParserTe; break; } } while(false); return ret; } void subghz_protocol_decoder_legrand_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderLegrand* instance = context; furi_string_cat_printf( output, "%s %dbit\r\n" "Key:0x%05lX\r\n" "Te:%luus\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data & 0xFFFFFF), instance->te); }