1
mirror of https://github.com/DarkFlippers/unleashed-firmware.git synced 2025-12-12 20:49:49 +04:00
Files
unleashed-firmware/lib/subghz/protocols/legrand.c

379 lines
13 KiB
C
Raw Normal View History

#include "legrand.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolLegrand"
static const SubGhzBlockConst subghz_protocol_legrand_const = {
.te_short = 375,
.te_long = 1125,
.te_delta = 150,
.min_count_bit_for_found = 18,
};
struct SubGhzProtocolDecoderLegrand {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint32_t te;
uint32_t last_data;
};
struct SubGhzProtocolEncoderLegrand {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
uint32_t te;
};
typedef enum {
LegrandDecoderStepReset = 0,
LegrandDecoderStepFirstBit,
LegrandDecoderStepSaveDuration,
LegrandDecoderStepCheckDuration,
} LegrandDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_legrand_decoder = {
.alloc = subghz_protocol_decoder_legrand_alloc,
.free = subghz_protocol_decoder_legrand_free,
.feed = subghz_protocol_decoder_legrand_feed,
.reset = subghz_protocol_decoder_legrand_reset,
.get_hash_data = subghz_protocol_decoder_legrand_get_hash_data,
.serialize = subghz_protocol_decoder_legrand_serialize,
.deserialize = subghz_protocol_decoder_legrand_deserialize,
.get_string = subghz_protocol_decoder_legrand_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_legrand_encoder = {
.alloc = subghz_protocol_encoder_legrand_alloc,
.free = subghz_protocol_encoder_legrand_free,
.deserialize = subghz_protocol_encoder_legrand_deserialize,
.stop = subghz_protocol_encoder_legrand_stop,
.yield = subghz_protocol_encoder_legrand_yield,
};
const SubGhzProtocol subghz_protocol_legrand = {
.name = SUBGHZ_PROTOCOL_LEGRAND_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_legrand_decoder,
.encoder = &subghz_protocol_legrand_encoder,
};
void* subghz_protocol_encoder_legrand_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderLegrand* instance = malloc(sizeof(SubGhzProtocolEncoderLegrand));
instance->base.protocol = &subghz_protocol_legrand;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = subghz_protocol_legrand_const.min_count_bit_for_found * 2 + 1;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_legrand_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderLegrand* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderLegrand instance
* @return true On success
*/
static bool subghz_protocol_encoder_legrand_get_upload(SubGhzProtocolEncoderLegrand* instance) {
furi_assert(instance);
size_t size_upload = (instance->generic.data_count_bit * 2) + 1;
if(size_upload != instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Invalid data bit count");
return false;
}
size_t index = 0;
// Send sync
instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te * 16);
// Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
// send bit 1
instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te);
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)instance->te * 3);
} else {
// send bit 0
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)instance->te * 3);
instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te);
}
}
return true;
}
SubGhzProtocolStatus
subghz_protocol_encoder_legrand_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderLegrand* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_legrand_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
ret = SubGhzProtocolStatusErrorParserOthers;
break;
}
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
ret = SubGhzProtocolStatusErrorParserTe;
break;
}
// optional parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_legrand_get_upload(instance)) {
ret = SubGhzProtocolStatusErrorEncoderGetUpload;
break;
}
instance->encoder.is_running = true;
} while(false);
return ret;
}
void subghz_protocol_encoder_legrand_stop(void* context) {
SubGhzProtocolEncoderLegrand* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_legrand_yield(void* context) {
SubGhzProtocolEncoderLegrand* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_legrand_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderLegrand* instance = malloc(sizeof(SubGhzProtocolDecoderLegrand));
instance->base.protocol = &subghz_protocol_legrand;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_legrand_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLegrand* instance = context;
free(instance);
}
void subghz_protocol_decoder_legrand_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLegrand* instance = context;
instance->decoder.parser_step = LegrandDecoderStepReset;
instance->last_data = 0;
}
void subghz_protocol_decoder_legrand_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderLegrand* instance = context;
switch(instance->decoder.parser_step) {
case LegrandDecoderStepReset:
if(!level && DURATION_DIFF(duration, subghz_protocol_legrand_const.te_short * 16) <
subghz_protocol_legrand_const.te_delta * 8) {
instance->decoder.parser_step = LegrandDecoderStepFirstBit;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->te = 0;
}
break;
case LegrandDecoderStepFirstBit:
if(level) {
if(DURATION_DIFF(duration, subghz_protocol_legrand_const.te_short) <
subghz_protocol_legrand_const.te_delta) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->te += duration * 4; // long low that is part of sync, then short high
}
if(DURATION_DIFF(duration, subghz_protocol_legrand_const.te_long) <
subghz_protocol_legrand_const.te_delta * 3) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->te += duration / 3 * 4; // short low that is part of sync, then long high
}
if(instance->decoder.decode_count_bit > 0) {
// advance to the next step if either short or long is found
instance->decoder.parser_step = LegrandDecoderStepSaveDuration;
break;
}
}
instance->decoder.parser_step = LegrandDecoderStepReset;
break;
case LegrandDecoderStepSaveDuration:
if(!level) {
instance->decoder.te_last = duration;
instance->te += duration;
instance->decoder.parser_step = LegrandDecoderStepCheckDuration;
break;
}
instance->decoder.parser_step = LegrandDecoderStepReset;
break;
case LegrandDecoderStepCheckDuration:
if(level) {
uint8_t found = 0;
if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_legrand_const.te_long) <
subghz_protocol_legrand_const.te_delta * 3 &&
DURATION_DIFF(duration, subghz_protocol_legrand_const.te_short) <
subghz_protocol_legrand_const.te_delta) {
found = 1;
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
}
if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_legrand_const.te_short) <
subghz_protocol_legrand_const.te_delta &&
DURATION_DIFF(duration, subghz_protocol_legrand_const.te_long) <
subghz_protocol_legrand_const.te_delta * 3) {
found = 1;
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
}
if(found) {
instance->te += duration;
if(instance->decoder.decode_count_bit <
subghz_protocol_legrand_const.min_count_bit_for_found) {
instance->decoder.parser_step = LegrandDecoderStepSaveDuration;
break;
}
// enough bits for a packet found, save it only if there was a previous packet
// with the same data
if(instance->last_data && (instance->last_data == instance->decoder.decode_data)) {
instance->te /= instance->decoder.decode_count_bit * 4;
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback) {
instance->base.callback(&instance->base, instance->base.context);
}
}
instance->last_data = instance->decoder.decode_data;
// fallthrough to reset, the next bit is expected to be a sync
// it also takes care of resetting the decoder state
}
}
instance->decoder.parser_step = LegrandDecoderStepReset;
break;
}
}
uint8_t subghz_protocol_decoder_legrand_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLegrand* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_legrand_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderLegrand* instance = context;
SubGhzProtocolStatus ret =
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
if((ret == SubGhzProtocolStatusOk) &&
!flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1)) {
FURI_LOG_E(TAG, "Unable to add TE");
ret = SubGhzProtocolStatusErrorParserTe;
}
return ret;
}
SubGhzProtocolStatus
subghz_protocol_decoder_legrand_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderLegrand* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_legrand_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
ret = SubGhzProtocolStatusErrorParserOthers;
break;
}
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
ret = SubGhzProtocolStatusErrorParserTe;
break;
}
} while(false);
return ret;
}
void subghz_protocol_decoder_legrand_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderLegrand* instance = context;
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%05lX\r\n"
"Te:%luus\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data & 0xFFFFFF),
instance->te);
}