#include "gangqi.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #include "../blocks/custom_btn_i.h" #define TAG "SubGhzProtocolGangQi" static const SubGhzBlockConst subghz_protocol_gangqi_const = { .te_short = 500, .te_long = 1200, .te_delta = 200, .min_count_bit_for_found = 34, }; struct SubGhzProtocolDecoderGangQi { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderGangQi { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { GangQiDecoderStepReset = 0, GangQiDecoderStepSaveDuration, GangQiDecoderStepCheckDuration, } GangQiDecoderStep; const SubGhzProtocolDecoder subghz_protocol_gangqi_decoder = { .alloc = subghz_protocol_decoder_gangqi_alloc, .free = subghz_protocol_decoder_gangqi_free, .feed = subghz_protocol_decoder_gangqi_feed, .reset = subghz_protocol_decoder_gangqi_reset, .get_hash_data = subghz_protocol_decoder_gangqi_get_hash_data, .serialize = subghz_protocol_decoder_gangqi_serialize, .deserialize = subghz_protocol_decoder_gangqi_deserialize, .get_string = subghz_protocol_decoder_gangqi_get_string, }; const SubGhzProtocolEncoder subghz_protocol_gangqi_encoder = { .alloc = subghz_protocol_encoder_gangqi_alloc, .free = subghz_protocol_encoder_gangqi_free, .deserialize = subghz_protocol_encoder_gangqi_deserialize, .stop = subghz_protocol_encoder_gangqi_stop, .yield = subghz_protocol_encoder_gangqi_yield, }; const SubGhzProtocol subghz_protocol_gangqi = { .name = SUBGHZ_PROTOCOL_GANGQI_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_gangqi_decoder, .encoder = &subghz_protocol_gangqi_encoder, }; void* subghz_protocol_encoder_gangqi_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderGangQi* instance = malloc(sizeof(SubGhzProtocolEncoderGangQi)); instance->base.protocol = &subghz_protocol_gangqi; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 256; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_gangqi_free(void* context) { furi_assert(context); SubGhzProtocolEncoderGangQi* instance = context; free(instance->encoder.upload); free(instance); } // Get custom button code static uint8_t subghz_protocol_gangqi_get_btn_code(void) { uint8_t custom_btn_id = subghz_custom_btn_get(); uint8_t original_btn_code = subghz_custom_btn_get_original(); uint8_t btn = original_btn_code; // Set custom button if((custom_btn_id == SUBGHZ_CUSTOM_BTN_OK) && (original_btn_code != 0)) { // Restore original button code btn = original_btn_code; } else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_UP) { switch(original_btn_code) { case 0xD: btn = 0xE; break; case 0xE: btn = 0xD; break; case 0xB: btn = 0xD; break; case 0x7: btn = 0xD; break; default: break; } } else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_DOWN) { switch(original_btn_code) { case 0xD: btn = 0xB; break; case 0xE: btn = 0xB; break; case 0xB: btn = 0xE; break; case 0x7: btn = 0xE; break; default: break; } } else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_LEFT) { switch(original_btn_code) { case 0xD: btn = 0x7; break; case 0xE: btn = 0x7; break; case 0xB: btn = 0x7; break; case 0x7: btn = 0xB; break; default: break; } } return btn; } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderGangQi instance */ static void subghz_protocol_encoder_gangqi_get_upload(SubGhzProtocolEncoderGangQi* instance) { furi_assert(instance); // Generate new key using custom or default button instance->generic.btn = subghz_protocol_gangqi_get_btn_code(); uint64_t new_key = (instance->generic.data >> 14) << 14 | (instance->generic.btn << 10) | (0b01 << 8); uint8_t crc = -0xD7 - ((new_key >> 32) & 0xFF) - ((new_key >> 24) & 0xFF) - ((new_key >> 16) & 0xFF) - ((new_key >> 8) & 0xFF); instance->generic.data = (new_key | crc); size_t index = 0; // Send key and GAP between parcels for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { // Send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_gangqi_const.te_long); if(i == 1) { //Send gap if bit was last instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_gangqi_const.te_short * 4 + subghz_protocol_gangqi_const.te_delta); } else { instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_gangqi_const.te_short); } } else { // Send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_gangqi_const.te_short); if(i == 1) { //Send gap if bit was last instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_gangqi_const.te_short * 4 + subghz_protocol_gangqi_const.te_delta); } else { instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_gangqi_const.te_long); } } } instance->encoder.size_upload = index; return; } /** * Analysis of received data and parsing serial number * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_gangqi_remote_controller(SubGhzBlockGeneric* instance) { instance->btn = (instance->data >> 10) & 0xF; instance->serial = (instance->data & 0xFFFFF0000) >> 16; // Save original button for later use if(subghz_custom_btn_get_original() == 0) { subghz_custom_btn_set_original(instance->btn); } subghz_custom_btn_set_max(3); // GangQi Decoder // 09.2024 - @xMasterX (MMX) // Thanks @Skorpionm for support! //// 4D=F8=171=229 byte sum should be always the same // Button // Serial || BBBB || CRC (byte sum) with overflow and starting point 0xD7 //034AAB75BC = 00110100101010101011 01 1101 01 101111 00 // A (0xD) //034AAB79B8 = 00110100101010101011 01 1110 01 101110 00 // B (0xE) //034AAB6DC4 = 00110100101010101011 01 1011 01 110001 00 // C (0xB) //034AAB5DD4 = 00110100101010101011 01 0111 01 110101 00 // D (0x7) //034AAB55DC = 00110100101010101011 01 0101 01 110111 00 // Settings (0x5) //034AAB51E0 = 00110100101010101011 01 0100 01 111000 00 // A (0x4) //034AAB49E8 = 00110100101010101011 01 0010 01 111010 00 // C (0x2) //034AAB59D8 = 00110100101010101011 01 0110 01 110110 00 // D (0x6) //034AAB45EC = 00110100101010101011 01 0001 01 111011 00 // Settings exit (0x1) // // Serial 3 bytes should meet requirements see validation example at subghz_protocol_decoder_gangqi_get_string // // Code for finding start byte for crc sum // //uint64_t test = 0x034AAB79B8; //B8 //for(size_t byte = 0; byte < 0xFF; ++byte) { // uint8_t crc_res = -byte - ((test >> 32) & 0xFF) - ((test >> 24) & 0xFF) - // ((test >> 16) & 0xFF) - ((test >> 8) & 0xFF); // if(crc_res == 0xB8) { // uint64_t test2 = 0x034AAB6DC4; //C4 // uint8_t crc_res2 = -byte - ((test2 >> 32) & 0xFF) - ((test2 >> 24) & 0xFF) - // ((test2 >> 16) & 0xFF) - ((test2 >> 8) & 0xFF); // if(crc_res2 == 0xC4) { // printf("Start byte for CRC = %02lX / CRC = %02X \n", byte, crc_res); // // printf("Testing second parcel CRC = %02X", crc_res2); // } // } // } } SubGhzProtocolStatus subghz_protocol_encoder_gangqi_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderGangQi* instance = context; SubGhzProtocolStatus ret = SubGhzProtocolStatusError; do { ret = subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_gangqi_const.min_count_bit_for_found); if(ret != SubGhzProtocolStatusOk) { break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_gangqi_remote_controller(&instance->generic); subghz_protocol_encoder_gangqi_get_upload(instance); if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF; } if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Key"); break; } instance->encoder.is_running = true; } while(false); return ret; } void subghz_protocol_encoder_gangqi_stop(void* context) { SubGhzProtocolEncoderGangQi* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_gangqi_yield(void* context) { SubGhzProtocolEncoderGangQi* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_gangqi_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderGangQi* instance = malloc(sizeof(SubGhzProtocolDecoderGangQi)); instance->base.protocol = &subghz_protocol_gangqi; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_gangqi_free(void* context) { furi_assert(context); SubGhzProtocolDecoderGangQi* instance = context; free(instance); } void subghz_protocol_decoder_gangqi_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderGangQi* instance = context; instance->decoder.parser_step = GangQiDecoderStepReset; } void subghz_protocol_decoder_gangqi_feed(void* context, bool level, volatile uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderGangQi* instance = context; switch(instance->decoder.parser_step) { case GangQiDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_gangqi_const.te_long * 2) < subghz_protocol_gangqi_const.te_delta * 3)) { //Found GAP instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = GangQiDecoderStepSaveDuration; } break; case GangQiDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = GangQiDecoderStepCheckDuration; } else { instance->decoder.parser_step = GangQiDecoderStepReset; } break; case GangQiDecoderStepCheckDuration: if(!level) { // Bit 0 is short and long timing if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_gangqi_const.te_short) < subghz_protocol_gangqi_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_gangqi_const.te_long) < subghz_protocol_gangqi_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = GangQiDecoderStepSaveDuration; // Bit 1 is long and short timing } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_gangqi_const.te_long) < subghz_protocol_gangqi_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_gangqi_const.te_short) < subghz_protocol_gangqi_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = GangQiDecoderStepSaveDuration; } else if( // End of the key DURATION_DIFF(duration, subghz_protocol_gangqi_const.te_short * 4) < subghz_protocol_gangqi_const.te_delta) { //Found next GAP and add bit 0 or 1 (only bit 0 was found on the remotes) if((DURATION_DIFF( instance->decoder.te_last, subghz_protocol_gangqi_const.te_short) < subghz_protocol_gangqi_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_gangqi_const.te_short * 4) < subghz_protocol_gangqi_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_gangqi_const.te_long) < subghz_protocol_gangqi_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_gangqi_const.te_short * 4) < subghz_protocol_gangqi_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } // If got 34 bits key reading is finished if(instance->decoder.decode_count_bit == subghz_protocol_gangqi_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = GangQiDecoderStepReset; } else { instance->decoder.parser_step = GangQiDecoderStepReset; } } else { instance->decoder.parser_step = GangQiDecoderStepReset; } break; } } /** * Get button name. * @param btn Button number, 4 bit */ static const char* subghz_protocol_gangqi_get_button_name(uint8_t btn) { const char* name_btn[16] = { "Unknown", "Exit settings", "Volume setting", "0x3", "Vibro sens. setting", "Settings mode", "Ringtone setting", "Ring", // D "0x8", "0x9", "0xA", "Alarm", // C "0xC", "Arm", // A "Disarm", // B "0xF"}; return btn <= 0xf ? name_btn[btn] : name_btn[0]; } uint8_t subghz_protocol_decoder_gangqi_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderGangQi* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_gangqi_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderGangQi* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } SubGhzProtocolStatus subghz_protocol_decoder_gangqi_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderGangQi* instance = context; return subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_gangqi_const.min_count_bit_for_found); } void subghz_protocol_decoder_gangqi_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderGangQi* instance = context; // Parse serial subghz_protocol_gangqi_remote_controller(&instance->generic); // Get CRC uint8_t crc = -0xD7 - ((instance->generic.data >> 32) & 0xFF) - ((instance->generic.data >> 24) & 0xFF) - ((instance->generic.data >> 16) & 0xFF) - ((instance->generic.data >> 8) & 0xFF); // Get 3 bytes sum uint16_t sum_3bytes_serial = ((instance->generic.serial >> 16) & 0xFF) + ((instance->generic.serial >> 8) & 0xFF) + (instance->generic.serial & 0xFF); // Returns true if serial is valid bool serial_is_valid = (((!(sum_3bytes_serial & 0x3)) && ((0xB < sum_3bytes_serial) && (sum_3bytes_serial < 0x141))) && ((((instance->generic.serial >> 16) & 0xFF) >= 0x0) || (((instance->generic.serial >> 16) & 0xFF) <= 0x3))); furi_string_cat_printf( output, "%s %db\r\n" "Key: 0x%X%08lX\r\n" "Serial: 0x%05lX CRC: 0x%02X\r\n" "Btn: 0x%01X - %s\r\n" "Serial is %s\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint8_t)(instance->generic.data >> 32), (uint32_t)(instance->generic.data & 0xFFFFFFFF), instance->generic.serial, crc, instance->generic.btn, subghz_protocol_gangqi_get_button_name(instance->generic.btn), serial_is_valid ? "valid" : "invalid"); }