1
mirror of https://github.com/DarkFlippers/unleashed-firmware.git synced 2025-12-12 12:42:30 +04:00
Files
unleashed-firmware/lib/subghz/protocols/honeywell.c
2025-10-21 04:22:09 +03:00

438 lines
16 KiB
C

#include "honeywell.h"
#include <lib/toolbox/manchester_decoder.h>
#include <lib/toolbox/manchester_encoder.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
// Created by HTotoo 2023-10-30
// Got a lot of help from LiQuiDz.
// Protocol decoding help from: https://github.com/merbanan/rtl_433/blob/master/src/devices/honeywell.c
// Fixes and style changes to use similar codebase as other protocols by @xMasterX 2025-10
/*
64 bit packets, repeated multiple times per open/close event.
Protocol whitepaper: "DEFCON 22: Home Insecurity" by Logan Lamb.
Data layout:
PP PP C IIIII EE SS SS
- P: 16bit Preamble and sync bit (always ff fe)
- C: 4bit Channel
- I: 20bit Device serial number / or counter value
- E: 8bit Event, where 0x80 = Open/Close, 0x04 = Heartbeat / or id
- S: 16bit CRC
*/
#define TAG "SubGhzProtocolHoneywell"
static const SubGhzBlockConst subghz_protocol_honeywell_const = {
.te_long = 280,
.te_short = 143,
.te_delta = 51,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderHoneywell {
SubGhzProtocolDecoderBase base;
SubGhzBlockGeneric generic;
SubGhzBlockDecoder decoder;
ManchesterState manchester_saved_state;
};
struct SubGhzProtocolEncoderHoneywell {
SubGhzProtocolEncoderBase base;
SubGhzBlockGeneric generic;
SubGhzProtocolBlockEncoder encoder;
};
const SubGhzProtocolDecoder subghz_protocol_honeywell_decoder = {
.alloc = subghz_protocol_decoder_honeywell_alloc,
.free = subghz_protocol_decoder_honeywell_free,
.feed = subghz_protocol_decoder_honeywell_feed,
.reset = subghz_protocol_decoder_honeywell_reset,
.get_hash_data = subghz_protocol_decoder_honeywell_get_hash_data,
.serialize = subghz_protocol_decoder_honeywell_serialize,
.deserialize = subghz_protocol_decoder_honeywell_deserialize,
.get_string = subghz_protocol_decoder_honeywell_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_honeywell_encoder = {
.alloc = subghz_protocol_encoder_honeywell_alloc,
.free = subghz_protocol_encoder_honeywell_free,
.deserialize = subghz_protocol_encoder_honeywell_deserialize,
.stop = subghz_protocol_encoder_honeywell_stop,
.yield = subghz_protocol_encoder_honeywell_yield,
};
const SubGhzProtocol subghz_protocol_honeywell = {
.name = SUBGHZ_PROTOCOL_HONEYWELL_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send |
SubGhzProtocolFlag_Sensors,
.encoder = &subghz_protocol_honeywell_encoder,
.decoder = &subghz_protocol_honeywell_decoder,
};
static void subghz_protocol_decoder_honeywell_addbit(void* context, bool data);
void* subghz_protocol_decoder_honeywell_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderHoneywell* instance = malloc(sizeof(SubGhzProtocolDecoderHoneywell));
instance->base.protocol = &subghz_protocol_honeywell;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void* subghz_protocol_encoder_honeywell_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderHoneywell* instance = malloc(sizeof(SubGhzProtocolEncoderHoneywell));
instance->base.protocol = &subghz_protocol_honeywell;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 4;
instance->encoder.size_upload = 64 * 2 + 10;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_honeywell_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderHoneywell* instance = context;
free(instance->encoder.upload);
free(instance);
}
void subghz_protocol_decoder_honeywell_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderHoneywell* instance = context;
free(instance);
}
uint16_t subghz_protocol_honeywell_crc16(
uint8_t const message[],
unsigned nBytes,
uint16_t polynomial,
uint16_t init) {
uint16_t remainder = init;
unsigned byte, bit;
for(byte = 0; byte < nBytes; ++byte) {
remainder ^= message[byte] << 8;
for(bit = 0; bit < 8; ++bit) {
if(remainder & 0x8000) {
remainder = (remainder << 1) ^ polynomial;
} else {
remainder = (remainder << 1);
}
}
}
return remainder;
}
static LevelDuration
subghz_protocol_encoder_honeywell_add_duration_to_upload(ManchesterEncoderResult result) {
LevelDuration data = {.duration = 0, .level = 0};
switch(result) {
case ManchesterEncoderResultShortLow:
data.duration = subghz_protocol_honeywell_const.te_short;
data.level = false;
break;
case ManchesterEncoderResultLongLow:
data.duration = subghz_protocol_honeywell_const.te_long;
data.level = false;
break;
case ManchesterEncoderResultLongHigh:
data.duration = subghz_protocol_honeywell_const.te_long;
data.level = true;
break;
case ManchesterEncoderResultShortHigh:
data.duration = subghz_protocol_honeywell_const.te_short;
data.level = true;
break;
default:
furi_crash("SubGhz: ManchesterEncoderResult is incorrect.");
break;
}
return level_duration_make(data.level, data.duration);
}
static void
subghz_protocol_encoder_honeywell_get_upload(SubGhzProtocolEncoderHoneywell* instance) {
furi_assert(instance);
size_t index = 0;
ManchesterEncoderState enc_state;
manchester_encoder_reset(&enc_state);
ManchesterEncoderResult result;
for(uint8_t i = 63; i > 0; i--) {
if(!manchester_encoder_advance(
&enc_state, bit_read(instance->generic.data, i - 1), &result)) {
instance->encoder.upload[index++] =
subghz_protocol_encoder_honeywell_add_duration_to_upload(result);
manchester_encoder_advance(
&enc_state, bit_read(instance->generic.data, i - 1), &result);
}
instance->encoder.upload[index++] =
subghz_protocol_encoder_honeywell_add_duration_to_upload(result);
}
instance->encoder.upload[index] = subghz_protocol_encoder_honeywell_add_duration_to_upload(
manchester_encoder_finish(&enc_state));
if(level_duration_get_level(instance->encoder.upload[index])) {
index++;
}
//Send delay
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_honeywell_const.te_long * 300);
instance->encoder.size_upload = index;
}
SubGhzProtocolStatus
subghz_protocol_encoder_honeywell_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderHoneywell* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
do {
if(SubGhzProtocolStatusOk !=
subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_honeywell_get_upload(instance);
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
instance->encoder.is_running = true;
res = SubGhzProtocolStatusOk;
} while(false);
return res;
}
void subghz_protocol_encoder_honeywell_stop(void* context) {
SubGhzProtocolEncoderHoneywell* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_honeywell_yield(void* context) {
SubGhzProtocolEncoderHoneywell* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void subghz_protocol_decoder_honeywell_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderHoneywell* instance = context;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
}
void subghz_protocol_decoder_honeywell_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderHoneywell* instance = context;
ManchesterEvent event = ManchesterEventReset;
if(!level) {
if(DURATION_DIFF(duration, subghz_protocol_honeywell_const.te_short) <
subghz_protocol_honeywell_const.te_delta) {
event = ManchesterEventShortLow;
} else if(
DURATION_DIFF(duration, subghz_protocol_honeywell_const.te_long) <
subghz_protocol_honeywell_const.te_delta * 2) {
event = ManchesterEventLongLow;
}
} else {
if(DURATION_DIFF(duration, subghz_protocol_honeywell_const.te_short) <
subghz_protocol_honeywell_const.te_delta) {
event = ManchesterEventShortHigh;
} else if(
DURATION_DIFF(duration, subghz_protocol_honeywell_const.te_long) <
subghz_protocol_honeywell_const.te_delta * 2) {
event = ManchesterEventLongHigh;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
subghz_protocol_decoder_honeywell_addbit(instance, data);
}
} else {
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
}
}
static void subghz_protocol_decoder_honeywell_addbit(void* context, bool data) {
SubGhzProtocolDecoderHoneywell* instance = context;
instance->decoder.decode_data = (instance->decoder.decode_data << 1) | data;
instance->decoder.decode_count_bit++;
if(instance->decoder.decode_count_bit < 62) {
return;
}
uint16_t preamble = (instance->decoder.decode_data >> 48) & 0xFFFF;
//can be multiple, since flipper can't read it well.. (it can, but the sensors are not that good, there are multiple of variations seen)
if(preamble == 0b0011111111111110 || preamble == 0b0111111111111110 ||
preamble == 0b1111111111111110) {
uint8_t datatocrc[4];
datatocrc[0] = (instance->decoder.decode_data >> 40) & 0xFF;
datatocrc[1] = (instance->decoder.decode_data >> 32) & 0xFF;
datatocrc[2] = (instance->decoder.decode_data >> 24) & 0xFF;
datatocrc[3] = (instance->decoder.decode_data >> 16) & 0xFF;
uint8_t channel = (instance->decoder.decode_data >> 44) & 0xF;
uint16_t crc_calc = 0;
if(channel == 0x2 || channel == 0x4 || channel == 0xA) {
// 2GIG brand
crc_calc = subghz_protocol_honeywell_crc16(datatocrc, 4, 0x8050, 0);
} else if(channel == 0x8) {
crc_calc = subghz_protocol_honeywell_crc16(datatocrc, 4, 0x8005, 0);
} else {
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
return;
}
uint16_t crc = instance->decoder.decode_data & 0xFFFF;
if(crc == crc_calc) {
// Removing possible artifacts from higher bits and setting header to FF FE
instance->generic.data =
((((((0xFF << 16) | ((instance->decoder.decode_data >> 40) & 0xFFFF)) << 16) |
((instance->decoder.decode_data >> 24) & 0xFFFF))
<< 16) |
((instance->decoder.decode_data >> 8) & 0xFFFF))
<< 8 |
(instance->decoder.decode_data & 0xFF);
instance->generic.data_count_bit = 64;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
return;
}
} else if(instance->decoder.decode_count_bit >= 64) {
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
return;
}
}
uint8_t subghz_protocol_decoder_honeywell_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderHoneywell* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_honeywell_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderHoneywell* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
SubGhzProtocolStatus
subghz_protocol_decoder_honeywell_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderHoneywell* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
res = subghz_block_generic_deserialize(&instance->generic, flipper_format);
if(res != SubGhzProtocolStatusOk) {
return res;
}
if(instance->generic.data_count_bit != 64) {
if(instance->generic.data_count_bit < 62) {
return SubGhzProtocolStatusErrorValueBitCount;
}
// Removing possible artifacts from higher bits and setting header to FF FE
instance->generic.data =
((((((0xFF << 16) | ((instance->generic.data >> 40) & 0xFFFF)) << 16) |
((instance->generic.data >> 24) & 0xFFFF))
<< 16) |
((instance->generic.data >> 8) & 0xFFFF))
<< 8 |
(instance->generic.data & 0xFF);
instance->generic.data_count_bit = 64;
}
return res;
}
void subghz_protocol_decoder_honeywell_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderHoneywell* instance = context;
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
instance->generic.serial = (instance->generic.data >> 24) & 0xFFFFF;
uint8_t sensor_status = (instance->generic.data >> 16) & 0xFF;
uint8_t channel = (instance->generic.data >> 44) & 0xF;
uint8_t contact = (sensor_status & 0x80) >> 7;
uint8_t tamper = (sensor_status & 0x40) >> 6;
uint8_t reed = (sensor_status & 0x20) >> 5;
uint8_t alarm = (sensor_status & 0x10) >> 4;
uint8_t battery_low = (sensor_status & 0x08) >> 3;
uint8_t heartbeat = (sensor_status & 0x04) >> 2;
furi_string_cat_printf(
output,
"%s\r\n%dbit "
"Sn:%07lu Ch:%u\r\n"
"LowBat:%d HB: %d Cont: %s\r\n"
"Key:%08lX%08lX\r\n"
"State: L1:%u L2:%u L3:%u L4:%u",
instance->generic.protocol_name,
instance->generic.data_count_bit,
instance->generic.serial,
channel,
battery_low,
heartbeat,
contact ? "open" : "closed",
code_found_hi,
code_found_lo,
contact,
reed,
alarm,
tamper);
}