0
mirror of https://github.com/OneOfEleven/uv-k5-firmware-custom.git synced 2025-04-28 22:31:25 +03:00

640 lines
15 KiB
C
Raw Normal View History

2023-10-20 19:37:03 +01:00
#include <string.h>
2023-10-21 09:14:46 +01:00
#include "bsp/dp32g030/crc.h"
2023-10-25 14:19:18 +01:00
#include "driver/crc.h"
2023-10-24 22:41:09 +01:00
#include "driver/uart.h"
2023-10-20 19:37:03 +01:00
#include "mdc1200.h"
2023-10-21 09:14:46 +01:00
#include "misc.h"
2023-10-25 19:26:22 +01:00
#define FEC_K 7
2023-10-25 21:05:47 +01:00
// **********************************************************
// pre-amble and sync pattern
2023-10-22 14:22:53 +01:00
//
// >= 24-bit pre-amble
2023-10-25 21:05:47 +01:00
// 40-bit sync
2023-10-22 14:22:53 +01:00
//
2023-10-25 21:05:47 +01:00
static const uint8_t pre_amble[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0xCC};
static const uint8_t sync[] = {0x07, 0x09, 0x2a, 0x44, 0x6f};
2023-10-25 19:26:22 +01:00
/*
2023-10-21 20:54:42 +01:00
uint8_t bit_reverse_8(uint8_t n)
{
n = ((n >> 1) & 0x55u) | ((n << 1) & 0xAAu);
n = ((n >> 2) & 0x33u) | ((n << 2) & 0xCCu);
n = ((n >> 4) & 0x0Fu) | ((n << 4) & 0xF0u);
return n;
}
2023-10-21 20:54:42 +01:00
uint16_t bit_reverse_16(uint16_t n)
{ // untested
n = ((n >> 1) & 0x5555u) | ((n << 1) & 0xAAAAu);
n = ((n >> 2) & 0x3333u) | ((n << 2) & 0xCCCCu);
n = ((n >> 4) & 0x0F0Fu) | ((n << 4) & 0xF0F0u);
n = ((n >> 8) & 0x00FFu) | ((n << 8) & 0xFF00u);
return n;
}
2023-10-25 19:26:22 +01:00
2023-10-21 20:54:42 +01:00
uint32_t bit_reverse_32(uint32_t n)
{
n = ((n >> 1) & 0x55555555u) | ((n << 1) & 0xAAAAAAAAu);
n = ((n >> 2) & 0x33333333u) | ((n << 2) & 0xCCCCCCCCu);
n = ((n >> 4) & 0x0F0F0F0Fu) | ((n << 4) & 0xF0F0F0F0u);
n = ((n >> 8) & 0x00FF00FFu) | ((n << 8) & 0xFF00FF00u);
n = ((n >> 16) & 0x0000FFFFu) | ((n << 16) & 0xFFFF0000u);
return n;
}
2023-10-25 14:19:18 +01:00
*/
// ************************************
2023-10-25 21:05:47 +01:00
// common
2023-10-25 14:19:18 +01:00
#if 0
2023-10-20 19:37:03 +01:00
uint16_t compute_crc(const uint8_t *data, const unsigned int data_len)
{ // using the reverse computation avoids having to reverse the bit order during and after
2023-10-23 10:42:51 +01:00
unsigned int i;
uint16_t crc = 0;
2023-10-23 10:42:51 +01:00
for (i = 0; i < data_len; i++)
{
unsigned int k;
crc ^= data[i];
for (k = 8; k > 0; k--)
crc = (crc & 1u) ? (crc >> 1) ^ 0x8408 : crc >> 1;
}
2023-10-25 16:10:44 +01:00
return crc ^ 0xffff;
}
2023-10-25 16:10:44 +01:00
2023-10-25 14:19:18 +01:00
#elif 1
uint16_t compute_crc(const uint8_t *data, const unsigned int data_len)
2023-10-25 16:10:44 +01:00
{ // let the CPU do the crc for us :)
2023-10-25 14:19:18 +01:00
uint16_t crc;
2023-10-25 16:10:44 +01:00
CRC_InitReverse();
crc = CRC_Calculate(data, data_len);
CRC_Init();
return crc;
2023-10-25 14:19:18 +01:00
}
2023-10-22 22:57:47 +01:00
2023-10-25 14:19:18 +01:00
#else
2023-10-22 22:57:47 +01:00
2023-10-25 14:19:18 +01:00
uint16_t compute_crc(const uint8_t *data, const unsigned int data_len)
{
unsigned int i;
uint16_t crc = 0;
for (i = 0; i < data_len; i++)
{
uint8_t mask;
2023-10-25 16:10:44 +01:00
2023-10-25 14:19:18 +01:00
// bit reverse each data byte
const uint8_t bits = bit_reverse_8(*data++);
for (mask = 0x0080; mask != 0; mask >>= 1)
{
uint16_t msb = crc & 0x8000;
if (bits & mask)
msb ^= 0x8000;
crc <<= 1;
if (msb)
crc ^= 0x1021;
}
}
2023-10-22 22:57:47 +01:00
// bit reverse and invert the final CRC
2023-10-25 14:19:18 +01:00
return bit_reverse_16(crc) ^ 0xffff;
2023-10-20 19:37:03 +01:00
}
2023-10-25 16:10:44 +01:00
#endif
2023-10-20 19:37:03 +01:00
2023-10-25 14:19:18 +01:00
// ************************************
2023-10-25 21:05:47 +01:00
// RX
2023-10-25 14:19:18 +01:00
2023-10-24 04:43:26 +01:00
void error_correction(uint8_t *data)
2023-10-25 16:10:44 +01:00
{ // can correct up to 3 or 4 corrupted bits (I think)
int i;
uint8_t shift_reg;
uint8_t syn;
2023-10-24 04:43:26 +01:00
for (i = 0, shift_reg = 0, syn = 0; i < FEC_K; i++)
2023-10-24 04:43:26 +01:00
{
const uint8_t bi = data[i];
int bit_num;
for (bit_num = 0; bit_num < 8; bit_num++)
{
uint8_t b;
unsigned int k = 0;
shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u);
b = ((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u;
syn = (syn << 1) | (((b ^ (data[i + FEC_K] >> bit_num)) & 1u) ? 1u : 0u);
if (syn & 0x80) k++;
if (syn & 0x20) k++;
if (syn & 0x04) k++;
if (syn & 0x02) k++;
if (k >= 3)
2023-10-25 16:10:44 +01:00
{ // correct a bit error
int ii = i;
int bn = bit_num - 7;
if (bn < 0)
2023-10-24 04:43:26 +01:00
{
bn += 8;
ii--;
2023-10-24 04:43:26 +01:00
}
if (ii >= 0)
2023-10-25 16:10:44 +01:00
data[ii] ^= 1u << bn; // do it
syn ^= 0xA6; // 10100110
2023-10-24 04:43:26 +01:00
}
}
}
}
2023-10-25 19:26:22 +01:00
/*
void xor_demodulation(uint8_t *data, const unsigned int size, const bool sync_inverted)
{
unsigned int i;
uint8_t prev_bit = 0;
for (i = 0; i < size; i++)
{
int bit_num;
uint8_t in = data[i];
uint8_t out = 0;
for (bit_num = 7; bit_num >= 0; bit_num--)
{
const uint8_t new_bit = (in >> bit_num) & 1u;
uint8_t bit = prev_bit ^ new_bit;
if (sync_inverted)
bit ^= 1u;
prev_bit = new_bit;
out |= bit << bit_num;
}
data[i] = out;
}
}
*/
bool decode_data(uint8_t *data)
2023-10-24 04:43:26 +01:00
{
uint16_t crc1;
uint16_t crc2;
{ // de-interleave
unsigned int i;
unsigned int k;
unsigned int m;
2023-10-24 04:43:26 +01:00
uint8_t deinterleaved[(FEC_K * 2) * 8];
// interleave order
// 0, 16, 32, 48, 64, 80, 96,
// 1, 17, 33, 49, 65, 81, 97,
// 2, 18, 34, 50, 66, 82, 98,
// 3, 19, 35, 51, 67, 83, 99,
// 4, 20, 36, 52, 68, 84, 100,
// 5, 21, 37, 53, 69, 85, 101,
// 6, 22, 38, 54, 70, 86, 102,
// 7, 23, 39, 55, 71, 87, 103,
// 8, 24, 40, 56, 72, 88, 104,
// 9, 25, 41, 57, 73, 89, 105,
// 10, 26, 42, 58, 74, 90, 106,
// 11, 27, 43, 59, 75, 91, 107,
// 12, 28, 44, 60, 76, 92, 108,
// 13, 29, 45, 61, 77, 93, 109,
// 14, 30, 46, 62, 78, 94, 110,
// 15, 31, 47, 63, 79, 95, 111
2023-10-24 04:43:26 +01:00
// de-interleave the received bits
for (i = 0, k = 0; i < 16; i++)
{
for (m = 0; m < FEC_K; m++)
{
const unsigned int n = (m * 16) + i;
deinterleaved[k++] = (data[n >> 3] >> ((7 - n) & 7u)) & 1u;
}
}
2023-10-25 16:10:44 +01:00
// copy the de-interleaved bits back intoto the data buffer
for (i = 0, m = 0; i < (FEC_K * 2); i++)
2023-10-24 04:43:26 +01:00
{
unsigned int k;
uint8_t b = 0;
for (k = 0; k < 8; k++)
if (deinterleaved[m++])
2023-10-24 04:43:26 +01:00
b |= 1u << k;
data[i] = b;
}
}
2023-10-25 16:10:44 +01:00
// see if we can correct a couple of corrupted bits (if need be)
2023-10-24 04:43:26 +01:00
error_correction(data);
2023-10-25 16:10:44 +01:00
// rx'ed de-interleaved data (min 14 bytes) looks like this ..
//
// OP ARG ID CRC STATUS FEC bits
// 01 80 1234 2E3E 00 6580A862DD8808
2023-10-24 04:43:26 +01:00
crc1 = compute_crc(data, 4);
2023-10-25 16:10:44 +01:00
crc2 = ((uint16_t)data[5] << 8) | (data[4] << 0);
2023-10-24 04:43:26 +01:00
2023-10-25 19:26:22 +01:00
return (crc1 == crc2) ? true : false;
2023-10-24 04:43:26 +01:00
}
2023-10-25 21:05:47 +01:00
// **********************************************************
// TX
void xor_modulation(uint8_t *data, const unsigned int size)
{ // exclusive-or succesive bits - the entire packet
unsigned int i;
uint8_t prev_bit = 0;
for (i = 0; i < size; i++)
{
int bit_num;
uint8_t in = data[i];
uint8_t out = 0;
for (bit_num = 7; bit_num >= 0; bit_num--)
{
const uint8_t new_bit = (in >> bit_num) & 1u;
if (new_bit != prev_bit)
out |= 1u << bit_num; // previous bit and new bit are different - send a '1'
prev_bit = new_bit;
}
data[i] = out ^ 0xff;
}
}
2023-10-24 04:43:26 +01:00
uint8_t * encode_data(uint8_t *data)
{
2023-10-23 10:42:51 +01:00
// R=1/2 K=7 convolutional coder
//
2023-10-25 16:10:44 +01:00
// OP ARG ID CRC STATUS FEC bits
// 01 80 1234 2E3E 00 6580A862DD8808
2023-10-23 10:42:51 +01:00
//
// 1. reverse the bit order for each byte of the first 7 bytes (to undo the reversal performed for display, above)
// 2. feed those bits into a shift register which is preloaded with all zeros
// 3. for each bit, calculate the modulo-2 sum: bit(n-0) + bit(n-2) + bit(n-5) + bit(n-6)
2023-10-24 04:43:26 +01:00
// 4. then for each byte of resulting output, again reverse those bits to generate the values shown above
{ // add the FEC bits to the end of the data
unsigned int i;
2023-10-23 10:42:51 +01:00
uint8_t shift_reg = 0;
for (i = 0; i < FEC_K; i++)
2023-10-20 19:37:03 +01:00
{
2023-10-24 04:43:26 +01:00
unsigned int bit_num;
2023-10-23 10:42:51 +01:00
const uint8_t bi = data[i];
uint8_t bo = 0;
2023-10-24 04:43:26 +01:00
for (bit_num = 0; bit_num < 8; bit_num++)
2023-10-23 10:42:51 +01:00
{
2023-10-24 04:43:26 +01:00
shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u);
bo |= (((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u) << bit_num;
2023-10-23 10:42:51 +01:00
}
2023-10-24 04:43:26 +01:00
data[FEC_K + i] = bo;
2023-10-20 19:37:03 +01:00
}
}
2023-10-25 14:19:18 +01:00
2023-10-25 16:10:44 +01:00
// 01 00 00 23 DD F0 00 65 00 00 0F 45 1F 21
2023-10-25 19:26:22 +01:00
/*
2023-10-24 22:41:09 +01:00
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
{
const unsigned int size = FEC_K * 2;
unsigned int i;
UART_printf("mdc1200 tx1 %u ", size);
for (i = 0; i < size; i++)
UART_printf(" %02X", data[i]);
UART_SendText("\r\n");
}
#endif
2023-10-25 19:26:22 +01:00
*/
2023-10-24 04:43:26 +01:00
{ // interleave the bits
unsigned int i;
2023-10-23 10:42:51 +01:00
unsigned int k;
uint8_t interleaved[(FEC_K * 2) * 8];
// interleave order
// 0, 16, 32, 48, 64, 80, 96,
// 1, 17, 33, 49, 65, 81, 97,
// 2, 18, 34, 50, 66, 82, 98,
// 3, 19, 35, 51, 67, 83, 99,
// 4, 20, 36, 52, 68, 84, 100,
// 5, 21, 37, 53, 69, 85, 101,
// 6, 22, 38, 54, 70, 86, 102,
// 7, 23, 39, 55, 71, 87, 103,
// 8, 24, 40, 56, 72, 88, 104,
// 9, 25, 41, 57, 73, 89, 105,
// 10, 26, 42, 58, 74, 90, 106,
// 11, 27, 43, 59, 75, 91, 107,
// 12, 28, 44, 60, 76, 92, 108,
// 13, 29, 45, 61, 77, 93, 109,
// 14, 30, 46, 62, 78, 94, 110,
// 15, 31, 47, 63, 79, 95, 111
2023-10-23 10:42:51 +01:00
// bit interleaver
for (i = 0, k = 0; i < (FEC_K * 2); i++)
2023-10-20 19:37:03 +01:00
{
2023-10-24 04:43:26 +01:00
unsigned int bit_num;
2023-10-23 10:42:51 +01:00
const uint8_t b = data[i];
2023-10-24 04:43:26 +01:00
for (bit_num = 0; bit_num < 8; bit_num++)
2023-10-23 10:42:51 +01:00
{
2023-10-24 04:43:26 +01:00
interleaved[k] = (b >> bit_num) & 1u;
2023-10-23 10:42:51 +01:00
k += 16;
if (k >= sizeof(interleaved))
k -= sizeof(interleaved) - 1;
2023-10-23 10:42:51 +01:00
}
2023-10-20 19:37:03 +01:00
}
2023-10-24 22:41:09 +01:00
// copy the interleaved bits back to the data buffer
2023-10-23 10:42:51 +01:00
for (i = 0, k = 0; i < (FEC_K * 2); i++)
{
2023-10-24 04:43:26 +01:00
int bit_num;
2023-10-23 10:42:51 +01:00
uint8_t b = 0;
2023-10-24 04:43:26 +01:00
for (bit_num = 7; bit_num >= 0; bit_num--)
2023-10-23 10:42:51 +01:00
if (interleaved[k++])
2023-10-24 04:43:26 +01:00
b |= 1u << bit_num;
2023-10-23 10:42:51 +01:00
data[i] = b;
}
2023-10-20 19:37:03 +01:00
}
2023-10-23 10:42:51 +01:00
return data + (FEC_K * 2);
2023-10-20 19:37:03 +01:00
}
unsigned int MDC1200_encode_single_packet(uint8_t *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id)
2023-10-20 19:37:03 +01:00
{
2023-10-21 09:14:46 +01:00
unsigned int size;
uint16_t crc;
2023-10-21 20:54:42 +01:00
uint8_t *p = data;
2023-10-20 19:37:03 +01:00
memcpy(p, pre_amble, sizeof(pre_amble));
p += sizeof(pre_amble);
memcpy(p, sync, sizeof(sync));
p += sizeof(sync);
2023-10-20 19:37:03 +01:00
p[0] = op;
p[1] = arg;
p[2] = (unit_id >> 8) & 0x00ff;
p[3] = (unit_id >> 0) & 0x00ff;
2023-10-21 09:14:46 +01:00
crc = compute_crc(p, 4);
p[4] = (crc >> 0) & 0x00ff;
p[5] = (crc >> 8) & 0x00ff;
2023-10-23 10:42:51 +01:00
p[6] = 0; // unknown field (00 for PTTIDs, 76 for STS and MSG)
2023-10-20 19:37:03 +01:00
p = encode_data(p);
2023-10-21 09:14:46 +01:00
size = (unsigned int)(p - data);
2023-10-24 22:41:09 +01:00
/*
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
{
unsigned int i;
UART_printf("mdc1200 tx2 %u ", size);
for (i = 0; i < size; i++)
UART_printf(" %02X", data[i]);
UART_SendText("\r\n");
}
#endif
*/
2023-10-25 19:26:22 +01:00
xor_modulation(data, size);
2023-10-23 10:42:51 +01:00
2023-10-21 09:14:46 +01:00
return size;
2023-10-20 19:37:03 +01:00
}
/*
unsigned int MDC1200_encode_double_packet(uint8_t *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id, const uint8_t b0, const uint8_t b1, const uint8_t b2, const uint8_t b3)
2023-10-20 19:37:03 +01:00
{
2023-10-21 09:14:46 +01:00
unsigned int size;
uint16_t crc;
2023-10-21 20:54:42 +01:00
uint8_t *p = data;
memcpy(p, pre_amble, sizeof(pre_amble));
p += sizeof(pre_amble);
memcpy(p, sync, sizeof(sync));
p += sizeof(sync);
2023-10-20 19:37:03 +01:00
p[0] = op;
p[1] = arg;
p[2] = (unit_id >> 8) & 0x00ff;
p[3] = (unit_id >> 0) & 0x00ff;
2023-10-21 09:14:46 +01:00
crc = compute_crc(p, 4);
p[4] = (crc >> 0) & 0x00ff;
p[5] = (crc >> 8) & 0x00ff;
2023-10-23 10:42:51 +01:00
p[6] = 0; // status byte
2023-10-20 19:37:03 +01:00
p = encode_data(p);
2023-10-20 19:37:03 +01:00
p[0] = b0;
p[1] = b1;
p[2] = b2;
p[3] = b3;
2023-10-21 09:14:46 +01:00
crc = compute_crc(p, 4);
p[4] = (crc >> 0) & 0x00ff;
p[5] = (crc >> 8) & 0x00ff;
2023-10-23 10:42:51 +01:00
p[6] = 0; // status byte
2023-10-20 19:37:03 +01:00
p = encode_data(p);
2023-10-20 19:37:03 +01:00
2023-10-21 09:14:46 +01:00
size = (unsigned int)(p - data);
2023-10-22 22:57:47 +01:00
2023-10-25 19:26:22 +01:00
xor_modulation(data, size);
2023-10-22 22:57:47 +01:00
2023-10-21 09:14:46 +01:00
return size;
2023-10-20 19:37:03 +01:00
}
*/
2023-10-25 19:26:22 +01:00
2023-10-25 21:05:47 +01:00
// **********************************************************
// RX
2023-10-25 19:26:22 +01:00
struct {
uint8_t bit;
uint8_t prev_bit;
uint8_t xor_bit;
uint64_t shift_reg;
unsigned int bit_count;
unsigned int stage;
bool inverted_sync;
unsigned int data_index;
uint8_t data[40];
} rx;
void MDC1200_reset_rx(void)
{
memset(&rx, 0, sizeof(rx));
}
bool MDC1200_process_rx(const uint8_t rx_byte, uint8_t *op, uint8_t *arg, uint16_t *unit_id)
{
unsigned int i;
int k;
for (k = 7; k >= 0; k--)
{
rx.prev_bit = rx.bit;
rx.bit = (rx_byte >> k) & 1u;
if (rx.stage == 0)
{ // scanning for the pre-amble
rx.xor_bit = rx.bit & 1u;
}
else
{
rx.xor_bit = (rx.xor_bit ^ rx.bit) & 1u;
if (rx.inverted_sync)
rx.xor_bit ^= 1u;
}
rx.shift_reg = (rx.shift_reg << 1) | (rx.xor_bit & 1u);
rx.bit_count++;
// *********
if (rx.stage == 0)
{ // looking for pre-amble
if (rx.bit_count < 20 || (rx.shift_reg & 0xfffff) != 1u)
continue;
rx.xor_bit = 1;
rx.stage = 1;
rx.bit_count = 1;
//s.printf("%5u %2u %u pre-amble found", index, rx_bit_count, rx_packet_stage);
//Memo1->Lines->Add(s);
}
if (rx.stage < 2)
{
//s.printf("%5u %3u %u ", index, rx_bit_count, rx_packet_stage);
//for (uint64_t mask = 1ull << ((sizeof(rx_shift_reg) * 8) - 1); mask != 0; mask >>= 1)
// s += (rx_shift_reg & mask) ? '#' : '.';
//s += " ";
//for (int i = sizeof(rx_shift_reg) - 1; i >= 0; i--)
//{
// String s2;
// s2.printf(" %02X", (uint8_t)(rx_shift_reg >> (i * 8)));
// s += s2;
//}
//Memo1->Lines->Add(s);
}
if (rx.stage == 1)
{ // looking for the 40-bit sync pattern, it follows the 24-bit pre-amble
const unsigned int sync_bit_ok_threshold = 32;
if (rx.bit_count >= sync_bit_ok_threshold)
{
// 40-bit sync pattern
uint64_t sync_nor = 0x07092a446fu; // normal
uint64_t sync_inv = 0xffffffffffu ^ sync_nor; // bit inverted
sync_nor ^= rx.shift_reg;
sync_inv ^= rx.shift_reg;
unsigned int nor_count = 0;
unsigned int inv_count = 0;
for (i = 40; i > 0; i--, sync_nor >>= 1, sync_inv >>= 1)
{
nor_count += sync_nor & 1u;
inv_count += sync_inv & 1u;
}
nor_count = 40 - nor_count;
inv_count = 40 - inv_count;
if (nor_count >= sync_bit_ok_threshold || inv_count >= sync_bit_ok_threshold)
{ // good enough
rx.inverted_sync = (inv_count > nor_count) ? true : false;
//String s;
//s.printf("%5u %2u %u sync found %s %u bits ",
// index,
// rx_bit_count,
// rx_packet_stage,
// rx_inverted_sync ? "inv" : "nor",
// rx_inverted_sync ? inv_count : nor_count);
//for (int i = 4; i >= 0; i--)
//{
// String s2;
// uint8_t b = rx_shift_reg >> (8 * i);
// if (rx_inverted_sync)
// b ^= 0xff;
// s2.printf(" %02X", b);
// s += s2;
//}
//Memo1->Lines->Add(s);
rx.data_index = 0;
rx.bit_count = 0;
rx.stage++;
}
}
continue;
}
// *********
if (rx.stage < 2)
continue;
if (rx.bit_count < 8)
continue;
rx.bit_count = 0;
// 55 55 55 55 55 55 55 07 09 2A 44 6F 94 9C 22 20 32 A4 1A 37 1E 3A 00 98 2C 84
rx.data[rx.data_index++] = rx.shift_reg & 0xff; // save the last 8 bits
if (rx.data_index < (FEC_K * 2))
continue;
// s.printf("%5u %3u %u %2u ", index, rx_bit_count, rx_packet_stage, rx_buffer.size());
// for (i = 0; i < rx_data_index; i++)
// {
// String s2;
// const uint8_t b = rx_buffer[i];
// s2.printf(" %02X", b);
// s += s2;
// }
// Memo1->Lines->Add(s);
if (!decode_data(rx.data))
{
MDC1200_reset_rx();
continue;
}
// extract the info from the packet
*op = rx.data[0];
*arg = rx.data[1];
*unit_id = ((uint16_t)rx.data[3] << 8) | (rx.data[2] << 0);
//s.printf("%5u %3u %u %2u decoded ", index, rx_bit_count, rx_packet_stage, rx_buffer.size());
//for (i = 0; i < 14; i++)
//{
// String s2;
// const uint8_t b = data[i];
// s2.printf(" %02X", b);
// s += s2;
//}
//Memo1->Lines->Add(s);
// reset the detector
MDC1200_reset_rx();
return true;
}
return false;
}
2023-10-25 21:05:47 +01:00
// **********************************************************
2023-10-20 19:37:03 +01:00
/*
void test(void)
{
uint8_t data[42];
2023-10-20 19:37:03 +01:00
const int size = MDC1200_encode_single_packet(data, 0x12, 0x34, 0x5678);
// const int size = MDC1200_encode_double_packet(data, 0x55, 0x34, 0x5678, 0x0a, 0x0b, 0x0c, 0x0d);
}
*/