0
mirror of https://github.com/OneOfEleven/uv-k5-firmware-custom.git synced 2025-04-28 14:21:25 +03:00

AIRCOPY now has error correction (REQ-ACKs) to fix corrupted/lost packets during transfer

This commit is contained in:
OneOfEleven 2023-10-15 11:24:20 +01:00
parent 7c3717549a
commit 319f22dcb8
15 changed files with 1036 additions and 507 deletions

View File

@ -38,7 +38,7 @@ ENABLE_AM_FIX := 1
ENABLE_AM_FIX_SHOW_DATA := 1 ENABLE_AM_FIX_SHOW_DATA := 1
ENABLE_SQUELCH_MORE_SENSITIVE := 1 ENABLE_SQUELCH_MORE_SENSITIVE := 1
ENABLE_FASTER_CHANNEL_SCAN := 1 ENABLE_FASTER_CHANNEL_SCAN := 1
ENABLE_RSSI_BAR := 0 ENABLE_RSSI_BAR := 1
ENABLE_SHOW_TX_TIMEOUT := 0 ENABLE_SHOW_TX_TIMEOUT := 0
ENABLE_AUDIO_BAR := 1 ENABLE_AUDIO_BAR := 1
ENABLE_COPY_CHAN_TO_VFO := 1 ENABLE_COPY_CHAN_TO_VFO := 1

View File

@ -18,10 +18,14 @@
#include "app/aircopy.h" #include "app/aircopy.h"
#include "audio.h" #include "audio.h"
#include "bsp/dp32g030/gpio.h"
#include "driver/backlight.h"
#include "driver/bk4819.h" #include "driver/bk4819.h"
#include "driver/crc.h" #include "driver/crc.h"
#include "driver/eeprom.h" #include "driver/eeprom.h"
#include "driver/gpio.h"
#include "driver/system.h" #include "driver/system.h"
#include "driver/uart.h"
#include "frequencies.h" #include "frequencies.h"
#include "misc.h" #include "misc.h"
#include "radio.h" #include "radio.h"
@ -30,274 +34,528 @@
#include "ui/inputbox.h" #include "ui/inputbox.h"
#include "ui/ui.h" #include "ui/ui.h"
#define AIRCOPY_MAGIC_START 0xABCD // **********************
#define AIRCOPY_MAGIC_END 0xDCBA
#define AIRCOPY_LAST_EEPROM_ADDR 0x1E00 #define AIRCOPY_MAGIC_START_REQ 0xBCDA // used to request a block resend
#define AIRCOPY_MAGIC_END_REQ 0xCDBA // used to request a block resend
const uint8_t g_aircopy_block_max = 120; #define AIRCOPY_MAGIC_START 0xABCD // normal start value
uint8_t g_aircopy_block_number; #define AIRCOPY_MAGIC_END 0xDCBA // normal end value
uint8_t g_aircopy_rx_errors;
aircopy_state_t g_aircopy_state;
uint8_t aircopy_send_count_down_10ms; #define AIRCOPY_LAST_EEPROM_ADDR 0x1E00 // size of eeprom transferred
uint16_t g_fsk_buffer[36]; // FSK Data Length .. 0xABCD + 2 byte eeprom address + 64 byte payload + 2 byte CRC + 0xDCBA
unsigned int g_fsk_write_index; #define AIRCOPY_DATA_PACKET_SIZE (2 + 2 + 64 + 2 + 2)
uint16_t g_fsk_tx_timeout_10ms;
void AIRCOPY_start_FSK_tx(const uint8_t request_packet) // FSK Data Length .. 0xBCDA + 2 byte eeprom address + 2 byte CRC + 0xCDBA
#define AIRCOPY_REQ_PACKET_SIZE (2 + 2 + 64 + 2 + 2)
// **********************
const unsigned int g_aircopy_block_max = 120;
unsigned int g_aircopy_block_number;
uint8_t g_aircopy_rx_errors_fsk_crc;
uint8_t g_aircopy_rx_errors_magic;
uint8_t g_aircopy_rx_errors_crc;
aircopy_state_t g_aircopy_state;
uint16_t g_fsk_buffer[AIRCOPY_DATA_PACKET_SIZE / 2];
unsigned int g_fsk_write_index;
uint16_t g_fsk_tx_timeout_10ms;
uint8_t aircopy_send_count_down_10ms;
void AIRCOPY_init(void)
{ {
unsigned int i; // turn the backlight ON
const uint16_t eeprom_addr = (uint16_t)g_aircopy_block_number * 64; GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_BACKLIGHT);
// will be used to ask the TX/ing radio to resend a missing/corrupted packet RADIO_SetupRegisters(true);
(void)request_packet;
BK4819_SetupAircopy(AIRCOPY_DATA_PACKET_SIZE);
BK4819_reset_fsk();
g_aircopy_state = AIRCOPY_READY;
g_fsk_write_index = 0;
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false); // LED off
BK4819_start_fsk_rx(AIRCOPY_DATA_PACKET_SIZE);
GUI_SelectNextDisplay(DISPLAY_AIRCOPY);
}
void AIRCOPY_start_fsk_tx(const int request_block_num)
{
const unsigned int eeprom_addr = (request_block_num < 0) ? g_aircopy_block_number * 64 : (unsigned int)request_block_num * 64;
uint16_t fsk_reg59;
unsigned int k;
unsigned int tx_size = 0;
// ********* // *********
// packet start // packet start
g_fsk_buffer[0] = AIRCOPY_MAGIC_START; g_fsk_buffer[tx_size++] = (request_block_num < 0) ? AIRCOPY_MAGIC_START : AIRCOPY_MAGIC_START_REQ;
// eeprom address // eeprom address
g_fsk_buffer[1] = eeprom_addr; g_fsk_buffer[tx_size++] = eeprom_addr;
// data // data
EEPROM_ReadBuffer(eeprom_addr, &g_fsk_buffer[2], 64); if (request_block_num < 0)
{
EEPROM_ReadBuffer(eeprom_addr, &g_fsk_buffer[tx_size], 64);
tx_size += 64 / 2;
}
// data CRC // data CRC
g_fsk_buffer[34] = CRC_Calculate(&g_fsk_buffer[1], 2 + 64); g_fsk_buffer[tx_size++] = CRC_Calculate(&g_fsk_buffer[1], (request_block_num < 0) ? 2 + 64 : 2);
// packet end // packet end
g_fsk_buffer[35] = AIRCOPY_MAGIC_END; g_fsk_buffer[tx_size++] = (request_block_num < 0) ? AIRCOPY_MAGIC_END : AIRCOPY_MAGIC_END_REQ;
// ********* // *********
{ // scramble the packet { // scramble the packet
//for (i = 0; i < 34; i++)
//g_fsk_buffer[1 + i] ^= Obfuscation[i % ARRAY_SIZE(Obfuscation)];
uint8_t *p = (uint8_t *)&g_fsk_buffer[1]; uint8_t *p = (uint8_t *)&g_fsk_buffer[1];
for (i = 0; i < (34 * 2); i++) for (k = 0; k < ((tx_size - 2) * 2); k++)
*p++ ^= obfuscate_array[i % ARRAY_SIZE(obfuscate_array)]; *p++ ^= obfuscate_array[k % ARRAY_SIZE(obfuscate_array)];
} }
// TX the packet g_fsk_tx_timeout_10ms = 1000 / 10; // 1 second timeout
RADIO_SetTxParameters();
BK4819_SetupPowerAmplifier(0, g_current_vfo->p_tx->frequency); // VERY low TX power
// turn the RED LED on // turn the TX on
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, true); RADIO_enableTX(true);
// start sending the packet // REG_59
//
// <15> 0 TX FIFO
// 1 = clear
//
// <14> 0 RX FIFO
// 1 = clear
//
// <13> 0 FSK Scramble
// 1 = Enable
//
// <12> 0 FSK RX
// 1 = Enable
//
// <11> 0 FSK TX
// 1 = Enable
//
// <10> 0 FSK data when RX
// 1 = Invert
//
// <9> 0 FSK data when TX
// 1 = Invert
//
// <8> 0 ???
//
// <7:4> 0 FSK preamble length selection
// 0 = 1 byte
// 1 = 2 bytes
// 2 = 3 bytes
// 15 = 16 bytes
//
// <3> 0 FSK sync length selection
// 0 = 2 bytes (FSK Sync Byte 0, 1)
// 1 = 4 bytes (FSK Sync Byte 0, 1, 2, 3)
//
// <2:0> 0 ???
//
// 0x0068 0000 0000 0110 1000
//
fsk_reg59 = (0u << 15) | // 0 or 1 1 = clear TX FIFO
(0u << 14) | // 0 or 1 1 = clear RX FIFO
(0u << 13) | // 0 or 1 1 = scramble
(0u << 12) | // 0 or 1 1 = enable RX
(0u << 11) | // 0 or 1 1 = enable TX
(0u << 10) | // 0 or 1 1 = invert data when RX
(0u << 9) | // 0 or 1 1 = invert data when TX
(0u << 8) | // 0 or 1 ???
(6u << 4) | // 0 ~ 15 preamble Length Selection
(1u << 3) | // 0 or 1 sync length selection
(0u << 0); // 0 ~ 7 ???
// let the TX stabilize // set the packet size
SYSTEM_DelayMs(10); BK4819_WriteRegister(BK4819_REG_5D, (((tx_size * 2) - 1) << 8));
BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_TX_FINISHED); // clear TX fifo
BK4819_WriteRegister(BK4819_REG_59, (1u << 15) | fsk_reg59);
BK4819_WriteRegister(BK4819_REG_59, 0x8068); BK4819_WriteRegister(BK4819_REG_59, fsk_reg59);
BK4819_WriteRegister(BK4819_REG_59, 0x0068);
// load the packet // load the packet
for (i = 0; i < 36; i++) for (k = 0; k < tx_size; k++)
BK4819_WriteRegister(BK4819_REG_5F, g_fsk_buffer[i]); BK4819_WriteRegister(BK4819_REG_5F, g_fsk_buffer[k]);
// SYSTEM_DelayMs(20); // enable tx interrupt(s)
BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_TX_FINISHED);
BK4819_WriteRegister(BK4819_REG_59, 0x2868); // enable scramble, enable TX
BK4819_WriteRegister(BK4819_REG_59, (1u << 13) | (1u << 11) | fsk_reg59);
g_fsk_tx_timeout_10ms = 1000 / 10; // 1 second timeout
} }
void AIRCOPY_stop_FSK_tx(void) void AIRCOPY_stop_fsk_tx(const bool inc_block)
{ {
if (g_aircopy_state != AIRCOPY_TX && g_fsk_tx_timeout_10ms == 0) if (g_aircopy_state != AIRCOPY_TX && g_fsk_tx_timeout_10ms == 0)
return; return;
g_fsk_tx_timeout_10ms = 0; g_fsk_tx_timeout_10ms = 0;
BK4819_WriteRegister(BK4819_REG_02, 0); // disable all interrupts
// SYSTEM_DelayMs(20);
BK4819_ResetFSK();
// disable the TX // disable the TX
BK4819_SetupPowerAmplifier(0, 0); BK4819_SetupPowerAmplifier(0, 0); //
BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, false); BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, false); // ???
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, false); // LED off
// turn the RED LED off BK4819_reset_fsk();
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, false);
if (++g_aircopy_block_number >= g_aircopy_block_max) if (inc_block)
{ // transfer is complete {
g_aircopy_state = AIRCOPY_TX_COMPLETE; if (++g_aircopy_block_number >= g_aircopy_block_max)
{ // transfer is complete
g_aircopy_state = AIRCOPY_TX_COMPLETE;
}
else
{ // TX pause/gap time till we start the next packet
aircopy_send_count_down_10ms = 220 / 10; // 220ms
}
// RX mode
BK4819_start_fsk_rx(AIRCOPY_REQ_PACKET_SIZE);
g_update_display = true;
GUI_DisplayScreen();
} }
else else
{ { // RX mode
// TX pause/gap time till we start the next packet BK4819_start_fsk_rx(AIRCOPY_DATA_PACKET_SIZE);
#if 0
aircopy_send_count_down_10ms = 300 / 10; // 300ms
#else
aircopy_send_count_down_10ms = 10 / 10; // 10ms
#endif
} }
g_update_display = true;
GUI_DisplayScreen();
} }
void AIRCOPY_process_FSK_tx_10ms(void) void AIRCOPY_process_fsk_tx_10ms(void)
{ {
if (g_aircopy_state != AIRCOPY_TX) uint16_t interrupt_bits = 0;
if (g_aircopy_state != AIRCOPY_TX && g_aircopy_state != AIRCOPY_RX)
return; return;
if (g_fsk_tx_timeout_10ms == 0) if (g_fsk_tx_timeout_10ms == 0)
{ // not currently TX'ing { // not currently TX'ing
if (g_aircopy_block_number < g_aircopy_block_max)
{ // not yet finished the complete transfer
if (aircopy_send_count_down_10ms > 0)
{ // waiting till it's time to TX next packet
if (--aircopy_send_count_down_10ms == 0)
{ // start next packet
AIRCOPY_start_FSK_tx(0xff);
g_update_display = true; if (g_aircopy_state == AIRCOPY_TX && g_aircopy_block_number < g_aircopy_block_max)
GUI_DisplayScreen(); { // not yet finished the complete transfer
}
} if (aircopy_send_count_down_10ms > 0)
if (--aircopy_send_count_down_10ms > 0)
return; // not yet time to TX next packet
if (g_fsk_write_index > 0)
return; // currently RX'ing a packet
// start next TX packet
AIRCOPY_start_fsk_tx(-1);
g_update_display = true;
GUI_DisplayScreen();
} }
return; return;
} }
if (--g_fsk_tx_timeout_10ms > 0) if (--g_fsk_tx_timeout_10ms > 0)
{ // still TX'ing { // still TX'ing
if ((BK4819_ReadRegister(BK4819_REG_0C) & (1u << 0)) == 0) if ((BK4819_ReadRegister(BK4819_REG_0C) & (1u << 0)) == 0)
return; /// TX not yet finished return;
BK4819_WriteRegister(BK4819_REG_02, 0);
interrupt_bits = BK4819_ReadRegister(BK4819_REG_02);
if ((interrupt_bits & BK4819_REG_02_FSK_TX_FINISHED) == 0)
return; // TX not yet finished
} }
AIRCOPY_stop_FSK_tx(); AIRCOPY_stop_fsk_tx(true);
} }
void AIRCOPY_process_FSK_rx_10ms(const uint16_t interrupt_status_bits) void AIRCOPY_process_fsk_rx_10ms(void)
{ {
unsigned int i; const unsigned int block_size = 64;
uint16_t Status; const unsigned int write_size = 8;
const unsigned int req_ack_size = 4;
uint16_t interrupt_bits;
uint16_t status;
uint16_t crc1;
uint16_t crc2;
uint16_t eeprom_addr;
uint16_t *data;
unsigned int block_num;
bool req_ack_packet = false;
unsigned int i;
if (g_aircopy_state != AIRCOPY_RX) // REG_59
//
// <15> 0 TX FIFO
// 1 = clear
//
// <14> 0 RX FIFO
// 1 = clear
//
// <13> 0 FSK Scramble
// 1 = Enable
//
// <12> 0 FSK RX
// 1 = Enable
//
// <11> 0 FSK TX
// 1 = Enable
//
// <10> 0 FSK data when RX
// 1 = Invert
//
// <9> 0 FSK data when TX
// 1 = Invert
//
// <8> 0 ???
//
// <7:4> 0 FSK preamble length selection
// 0 = 1 byte
// 1 = 2 bytes
// 2 = 3 bytes
// 15 = 16 bytes
//
// <3> 0 FSK sync length selection
// 0 = 2 bytes (FSK Sync Byte 0, 1)
// 1 = 4 bytes (FSK Sync Byte 0, 1, 2, 3)
//
// <2:0> 0 ???
//
status = BK4819_ReadRegister(BK4819_REG_59);
if (status & (1u << 11) || g_fsk_tx_timeout_10ms > 0)
return; // FSK TX is busy
if ((status & (1u << 12)) == 0)
{ // FSK RX is disabled, enable it
g_fsk_write_index = 0;
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false); // LED off
BK4819_start_fsk_rx((g_aircopy_state == AIRCOPY_TX) ? AIRCOPY_REQ_PACKET_SIZE : AIRCOPY_DATA_PACKET_SIZE);
}
status = BK4819_ReadRegister(BK4819_REG_0C);
if ((status & (1u << 0)) == 0)
return; // no flagged interrupts
// read the interrupt flags
BK4819_WriteRegister(BK4819_REG_02, 0); // clear them
interrupt_bits = BK4819_ReadRegister(BK4819_REG_02);
if (interrupt_bits & BK4819_REG_02_FSK_RX_SYNC)
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, true); // LED on
if (interrupt_bits & BK4819_REG_02_FSK_RX_FINISHED)
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false); // LED off
if ((interrupt_bits & BK4819_REG_02_FSK_FIFO_ALMOST_FULL) == 0)
return; return;
if (interrupt_status_bits & BK4819_REG_02_FSK_RX_SYNC) BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, true); // LED on
{
// turn the green LED on
// BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, true);
}
if (interrupt_status_bits & BK4819_REG_02_FSK_RX_FINISHED) // fetch RX'ed data
for (i = 0; i < 4; i++)
{ {
// turn the green LED off const uint16_t word = BK4819_ReadRegister(BK4819_REG_5F);
// BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false);
}
if (interrupt_status_bits & BK4819_REG_02_FSK_FIFO_ALMOST_FULL)
{
for (i = 0; i < 4; i++)
g_fsk_buffer[g_fsk_write_index++] = BK4819_ReadRegister(BK4819_REG_5F);
if (g_fsk_write_index < ARRAY_SIZE(g_fsk_buffer)) if (g_fsk_write_index < ARRAY_SIZE(g_fsk_buffer))
{ g_fsk_buffer[g_fsk_write_index++] = word;
// turn the green LED on }
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, true);
return;
}
// turn the green LED off // REG_0B read only
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false); //
// <15:12> ???
//
// <11:8> DTMF/5-tone code received
//
// <7> FSK RX sync negative has been found
//
// <6> FSK RX sync positive has been found
//
// <5> ???
//
// <4> FSK RX CRC indicator
// 1 = CRC pass
// 0 = CRC fail
//
// <3:0> ???
//
status = BK4819_ReadRegister(BK4819_REG_0B);
// check to see if it's a REQ/ACK packet
if (g_fsk_write_index == req_ack_size)
req_ack_packet = (g_fsk_buffer[0] == AIRCOPY_MAGIC_START_REQ && g_fsk_buffer[g_fsk_write_index - 1] == AIRCOPY_MAGIC_END_REQ);
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
// UART_printf("aircopy rx %04X %u\r\n", interrupt_bits, g_fsk_write_index);
#endif
if (g_fsk_write_index < ARRAY_SIZE(g_fsk_buffer) && !req_ack_packet)
return; // not yet a complete packet
// restart the RX
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false); // LED off
BK4819_start_fsk_rx((g_aircopy_state == AIRCOPY_TX) ? AIRCOPY_REQ_PACKET_SIZE : AIRCOPY_DATA_PACKET_SIZE);
g_update_display = true;
// doc says bit 4 should be 1 = CRC OK, 0 = CRC FAIL, but original firmware checks for FAIL
if ((status & (1u << 4)) != 0)
{
g_aircopy_rx_errors_fsk_crc++;
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
UART_printf("aircopy status %04X\r\n", status);
#endif
g_fsk_write_index = 0;
return;
}
{ // unscramble the packet
uint8_t *p = (uint8_t *)&g_fsk_buffer[1];
for (i = 0; i < ((g_fsk_write_index - 2) * 2); i++)
*p++ ^= obfuscate_array[i % ARRAY_SIZE(obfuscate_array)];
}
// compute the CRC
crc1 = CRC_Calculate(&g_fsk_buffer[1], (g_fsk_write_index - 3) * 2);
// fetch the CRC
crc2 = g_fsk_buffer[g_fsk_write_index - 2];
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
// show the entire packet
UART_SendText("aircopy");
for (i = 0; i < g_fsk_write_index; i++)
UART_printf(" %04X", g_fsk_buffer[i]);
UART_printf(" - %04X\r\n", status);
#endif
// check the CRC
if (crc2 != crc1)
{ // invalid CRC
g_aircopy_rx_errors_crc++;
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
UART_printf("aircopy invalid CRC %04X %04X\r\n", crc2, crc1);
#endif
g_fsk_write_index = 0;
return;
}
eeprom_addr = g_fsk_buffer[1];
data = &g_fsk_buffer[2];
block_num = eeprom_addr / block_size;
if (req_ack_packet)
{ // it's a req/ack packet
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
UART_printf("aircopy RX req %04X %04X\r\n", block_num * 64, g_aircopy_block_number * 64);
#endif
if (g_aircopy_state == AIRCOPY_TX)
{ // send them the block they want
g_aircopy_block_number = block_num; // go to the block number they want
aircopy_send_count_down_10ms = 0; // TX asap
}
g_fsk_write_index = 0; g_fsk_write_index = 0;
g_update_display = true; return;
}
Status = BK4819_ReadRegister(BK4819_REG_0B); if (g_aircopy_state != AIRCOPY_RX)
{ // not in RX mode .. ignore it
g_fsk_write_index = 0;
return;
}
BK4819_PrepareFSKReceive(); if (g_fsk_buffer[0] != AIRCOPY_MAGIC_START || g_fsk_buffer[g_fsk_write_index - 1] != AIRCOPY_MAGIC_END)
{ // invalid magics .. ignore it
g_aircopy_rx_errors_magic++;
g_fsk_write_index = 0;
return;
}
// Doc says bit 4 should be 1 = CRC OK, 0 = CRC FAIL, but original firmware checks for FAIL if (eeprom_addr != (block_num * block_size))
{ // eeprom address not block aligned .. ignore it
g_fsk_write_index = 0;
return;
}
if ((Status & (1u << 4)) == 0 && if (block_num != g_aircopy_block_number)
g_fsk_buffer[0] == AIRCOPY_MAGIC_START && { // not the block number we're expecting .. request the correct block
g_fsk_buffer[35] == AIRCOPY_MAGIC_END)
g_fsk_write_index = 0;
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
UART_printf("aircopy TX req %04X %04X\r\n", g_aircopy_block_number * 64, block_num * 64);
#endif
// this packet takes 150ms start to finish
AIRCOPY_start_fsk_tx(g_aircopy_block_number);
g_fsk_tx_timeout_10ms = 200 / 5; // allow up to 200ms for the TX to complete
while (g_fsk_tx_timeout_10ms-- > 0)
{ {
unsigned int i; SYSTEM_DelayMs(5);
uint16_t CRC; if (BK4819_ReadRegister(BK4819_REG_0C) & (1u << 0))
{ // we have interrupt flags
{ // unscramble the packet BK4819_WriteRegister(BK4819_REG_02, 0);
uint8_t *p = (uint8_t *)&g_fsk_buffer[1]; const uint16_t interrupt_bits = BK4819_ReadRegister(BK4819_REG_02);
for (i = 0; i < (34 * 2); i++) if (interrupt_bits & BK4819_REG_02_FSK_TX_FINISHED)
*p++ ^= obfuscate_array[i % ARRAY_SIZE(obfuscate_array)]; g_fsk_tx_timeout_10ms = 0; // TX is complete
}
CRC = CRC_Calculate(&g_fsk_buffer[1], 2 + 64);
if (g_fsk_buffer[34] == CRC)
{ // CRC is valid
uint16_t eeprom_addr = g_fsk_buffer[1];
if (eeprom_addr == 0)
{ // start again
g_aircopy_block_number = 0;
g_aircopy_rx_errors = 0;
}
if ((eeprom_addr + 64) <= AIRCOPY_LAST_EEPROM_ADDR)
{ // eeprom block is valid .. write it directly to eeprom
uint16_t *pData = &g_fsk_buffer[2];
for (i = 0; i < 8; i++)
{
if (eeprom_addr == 0x0E98)
{ // power-on password .. wipe it
#ifndef ENABLE_PWRON_PASSWORD
pData[0] = 0xffff;
pData[1] = 0xffff;
#endif
}
else
if (eeprom_addr == 0x0F30)
{ // AES key .. wipe it
#ifdef ENABLE_RESET_AES_KEY
pData[0] = 0xffff;
pData[1] = 0xffff;
pData[2] = 0xffff;
pData[3] = 0xffff;
#endif
}
EEPROM_WriteBuffer(eeprom_addr, pData); // 8 bytes at a time
pData += 4;
eeprom_addr += 8;
}
g_aircopy_block_number = eeprom_addr / 64;
if (eeprom_addr >= AIRCOPY_LAST_EEPROM_ADDR)
{ // reached end of eeprom config area
g_aircopy_state = AIRCOPY_RX_COMPLETE;
// turn the green LED off
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false);
g_update_display = true;
}
memset(g_fsk_buffer, 0, sizeof(g_fsk_buffer));
return;
}
} }
} }
AIRCOPY_stop_fsk_tx(false);
g_aircopy_rx_errors++; return;
} }
if ((eeprom_addr + block_size) > AIRCOPY_LAST_EEPROM_ADDR)
{
g_fsk_write_index = 0;
return;
}
// clear the error counts
g_aircopy_rx_errors_fsk_crc = 0;
g_aircopy_rx_errors_magic = 0;
g_aircopy_rx_errors_crc = 0;
// eeprom block appears valid .. write it directly to eeprom
for (i = 0; i < (block_size / write_size); i++)
{
if (eeprom_addr == 0x0E98)
{ // power-on password .. wipe it
//#ifndef ENABLE_PWRON_PASSWORD
data[0] = 0xffff;
data[1] = 0xffff;
//#endif
}
else
if (eeprom_addr == 0x0F30)
{ // AES key .. wipe it
//#ifdef ENABLE_RESET_AES_KEY
data[0] = 0xffff;
data[1] = 0xffff;
data[2] = 0xffff;
data[3] = 0xffff;
//#endif
}
EEPROM_WriteBuffer(eeprom_addr, data); // 8 bytes at a time
data += write_size / sizeof(data[0]);
eeprom_addr += write_size;
}
g_aircopy_block_number = block_num + 1;
g_fsk_write_index = 0;
if (eeprom_addr >= AIRCOPY_LAST_EEPROM_ADDR)
g_aircopy_state = AIRCOPY_RX_COMPLETE; // reached end of eeprom config area
} }
static void AIRCOPY_Key_DIGITS(key_code_t Key, bool key_pressed, bool key_held) static void AIRCOPY_Key_DIGITS(key_code_t Key, bool key_pressed, bool key_held)
@ -307,7 +565,7 @@ static void AIRCOPY_Key_DIGITS(key_code_t Key, bool key_pressed, bool key_held)
if (g_aircopy_state != AIRCOPY_READY) if (g_aircopy_state != AIRCOPY_READY)
{ {
AIRCOPY_stop_FSK_tx(); AIRCOPY_stop_fsk_tx(false);
g_aircopy_state = AIRCOPY_READY; g_aircopy_state = AIRCOPY_READY;
g_update_display = true; g_update_display = true;
@ -359,10 +617,7 @@ static void AIRCOPY_Key_DIGITS(key_code_t Key, bool key_pressed, bool key_held)
g_current_vfo = g_rx_vfo; g_current_vfo = g_rx_vfo;
RADIO_SetupRegisters(true); AIRCOPY_init();
BK4819_SetupAircopy();
BK4819_ResetFSK();
return; return;
} }
} }
@ -383,7 +638,8 @@ static void AIRCOPY_Key_EXIT(bool key_pressed, bool key_held)
// turn the green LED off // turn the green LED off
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false); BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false);
AIRCOPY_stop_FSK_tx(); AIRCOPY_stop_fsk_tx(false);
g_input_box_index = 0; g_input_box_index = 0;
g_aircopy_state = AIRCOPY_READY; g_aircopy_state = AIRCOPY_READY;
g_update_display = true; g_update_display = true;
@ -418,12 +674,13 @@ static void AIRCOPY_Key_EXIT(bool key_pressed, bool key_held)
g_update_display = true; g_update_display = true;
GUI_DisplayScreen(); GUI_DisplayScreen();
g_fsk_write_index = 0; g_fsk_write_index = 0;
g_aircopy_block_number = 0; g_aircopy_block_number = 0;
g_aircopy_rx_errors = 0; g_aircopy_rx_errors_fsk_crc = 0;
memset(g_fsk_buffer, 0, sizeof(g_fsk_buffer)); g_aircopy_rx_errors_magic = 0;
g_aircopy_rx_errors_crc = 0;
BK4819_PrepareFSKReceive(); BK4819_start_fsk_rx(AIRCOPY_DATA_PACKET_SIZE);
} }
} }
@ -446,12 +703,14 @@ static void AIRCOPY_Key_MENU(bool key_pressed, bool key_held)
g_input_box_index = 0; g_input_box_index = 0;
g_fsk_write_index = 0; g_fsk_write_index = 0;
g_aircopy_block_number = 0; g_aircopy_block_number = 0;
g_aircopy_rx_errors = 0; g_aircopy_rx_errors_fsk_crc = 0;
g_aircopy_rx_errors_magic = 0;
g_aircopy_rx_errors_crc = 0;
g_fsk_tx_timeout_10ms = 0; g_fsk_tx_timeout_10ms = 0;
aircopy_send_count_down_10ms = 30 / 10; // 30ms aircopy_send_count_down_10ms = 0;
} }
} }

View File

@ -29,17 +29,19 @@ enum aircopy_state_e
}; };
typedef enum aircopy_state_e aircopy_state_t; typedef enum aircopy_state_e aircopy_state_t;
extern const uint8_t g_aircopy_block_max; extern const unsigned int g_aircopy_block_max;
extern uint8_t g_aircopy_block_number; extern unsigned int g_aircopy_block_number;
extern uint8_t g_aircopy_rx_errors; extern uint8_t g_aircopy_rx_errors_fsk_crc;
extern aircopy_state_t g_aircopy_state; extern uint8_t g_aircopy_rx_errors_magic;
extern uint16_t g_fsk_buffer[36]; extern uint8_t g_aircopy_rx_errors_crc;
extern unsigned int g_fsk_write_index; extern aircopy_state_t g_aircopy_state;
extern uint16_t g_fsk_tx_timeout_10ms; extern uint16_t g_fsk_buffer[36];
extern unsigned int g_fsk_write_index;
extern uint16_t g_fsk_tx_timeout_10ms;
void AIRCOPY_process_FSK_tx_10ms(void); void AIRCOPY_init(void);
void AIRCOPY_process_FSK_rx_10ms(const uint16_t interrupt_status_bits); void AIRCOPY_process_fsk_tx_10ms(void);
void AIRCOPY_stop_FSK_tx(void); void AIRCOPY_process_fsk_rx_10ms(void);
void AIRCOPY_ProcessKey(key_code_t key, bool key_pressed, bool key_held); void AIRCOPY_ProcessKey(key_code_t key, bool key_pressed, bool key_held);
#endif #endif

View File

@ -848,26 +848,13 @@ void APP_CheckRadioInterrupts(void)
if (g_screen_to_display == DISPLAY_SEARCH) if (g_screen_to_display == DISPLAY_SEARCH)
return; return;
while (BK4819_ReadRegister(BK4819_REG_0C) & 1u) while (BK4819_ReadRegister(BK4819_REG_0C) & (1u << 0))
{ // BK chip interrupt request { // BK chip interrupt request
uint16_t interrupt_status_bits;
// reset the interrupt ?
BK4819_WriteRegister(BK4819_REG_02, 0); BK4819_WriteRegister(BK4819_REG_02, 0);
const uint16_t interrupt_bits = BK4819_ReadRegister(BK4819_REG_02);
// fetch the interrupt status bits if (interrupt_bits & BK4819_REG_02_DTMF_5TONE_FOUND)
interrupt_status_bits = BK4819_ReadRegister(BK4819_REG_02);
// 0 = no phase shift
// 1 = 120deg phase shift
// 2 = 180deg phase shift
// 3 = 240deg phase shift
// const uint8_t ctcss_shift = BK4819_GetCTCShift();
// if (ctcss_shift > 0)
// g_ctcss_lost = true;
if (interrupt_status_bits & BK4819_REG_02_DTMF_5TONE_FOUND)
{ // save the RX'ed DTMF character { // save the RX'ed DTMF character
const char c = DTMF_GetCharacter(BK4819_GetDTMF_5TONE_Code()); const char c = DTMF_GetCharacter(BK4819_GetDTMF_5TONE_Code());
if (c != 0xff) if (c != 0xff)
@ -906,26 +893,26 @@ void APP_CheckRadioInterrupts(void)
} }
} }
if (interrupt_status_bits & BK4819_REG_02_CxCSS_TAIL) if (interrupt_bits & BK4819_REG_02_CxCSS_TAIL)
g_cxcss_tail_found = true; g_cxcss_tail_found = true;
if (interrupt_status_bits & BK4819_REG_02_CDCSS_LOST) if (interrupt_bits & BK4819_REG_02_CDCSS_LOST)
{ {
g_cdcss_lost = true; g_cdcss_lost = true;
g_cdcss_code_type = BK4819_get_CDCSS_code_type(); g_cdcss_code_type = BK4819_get_CDCSS_code_type();
} }
if (interrupt_status_bits & BK4819_REG_02_CDCSS_FOUND) if (interrupt_bits & BK4819_REG_02_CDCSS_FOUND)
g_cdcss_lost = false; g_cdcss_lost = false;
if (interrupt_status_bits & BK4819_REG_02_CTCSS_LOST) if (interrupt_bits & BK4819_REG_02_CTCSS_LOST)
g_ctcss_lost = true; g_ctcss_lost = true;
if (interrupt_status_bits & BK4819_REG_02_CTCSS_FOUND) if (interrupt_bits & BK4819_REG_02_CTCSS_FOUND)
g_ctcss_lost = false; g_ctcss_lost = false;
#ifdef ENABLE_VOX #ifdef ENABLE_VOX
if (interrupt_status_bits & BK4819_REG_02_VOX_LOST) if (interrupt_bits & BK4819_REG_02_VOX_LOST)
{ {
g_vox_lost = true; g_vox_lost = true;
g_vox_pause_count_down = 10; g_vox_pause_count_down = 10;
@ -951,34 +938,24 @@ void APP_CheckRadioInterrupts(void)
} }
} }
if (interrupt_status_bits & BK4819_REG_02_VOX_FOUND) if (interrupt_bits & BK4819_REG_02_VOX_FOUND)
{ {
g_vox_lost = false; g_vox_lost = false;
g_vox_pause_count_down = 0; g_vox_pause_count_down = 0;
} }
#endif #endif
if (interrupt_status_bits & BK4819_REG_02_SQUELCH_LOST) if (interrupt_bits & BK4819_REG_02_SQUELCH_LOST)
{ {
g_squelch_lost = true; g_squelch_lost = true;
// turn the LED off BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, true); // LED on
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, true);
} }
if (interrupt_status_bits & BK4819_REG_02_SQUELCH_FOUND) if (interrupt_bits & BK4819_REG_02_SQUELCH_FOUND)
{ {
g_squelch_lost = false; g_squelch_lost = false;
// turn the LED on BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false); // LED off
BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_GREEN, false);
} }
#ifdef ENABLE_AIRCOPY
if (g_screen_to_display == DISPLAY_AIRCOPY)
{
AIRCOPY_process_FSK_rx_10ms(interrupt_status_bits);
// AIRCOPY_process_FSK_tx_10ms(interrupt_status_bits);
}
#endif
} }
} }
@ -1625,18 +1602,12 @@ void APP_TimeSlice10ms(void)
#ifdef ENABLE_AIRCOPY #ifdef ENABLE_AIRCOPY
if (g_screen_to_display == DISPLAY_AIRCOPY) if (g_screen_to_display == DISPLAY_AIRCOPY)
{ { // we're in AIRCOPY mode
APP_CheckRadioInterrupts();
if (g_aircopy_state == AIRCOPY_RX)
{ // we're RX'ing
//AIRCOPY_process_FSK_rx_10ms(0);
}
else
if (g_aircopy_state == AIRCOPY_TX) if (g_aircopy_state == AIRCOPY_TX)
{ // we're TX'ing AIRCOPY_process_fsk_tx_10ms();
AIRCOPY_process_FSK_tx_10ms();
} AIRCOPY_process_fsk_rx_10ms();
APP_CheckKeys(); APP_CheckKeys();
@ -1720,9 +1691,9 @@ void APP_TimeSlice10ms(void)
RADIO_EnableCxCSS(); RADIO_EnableCxCSS();
BK4819_SetupPowerAmplifier(0, 0); BK4819_SetupPowerAmplifier(0, 0);
BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, false); BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, false); // ???
BK4819_Enable_AfDac_DiscMode_TxDsp(); BK4819_Enable_AfDac_DiscMode_TxDsp();
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, false); BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, false); // LED off
GUI_DisplayScreen(); GUI_DisplayScreen();
} }
@ -1732,13 +1703,12 @@ void APP_TimeSlice10ms(void)
GUI_DisplayScreen(); GUI_DisplayScreen();
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, true); RADIO_enableTX(false);
RADIO_SetTxParameters();
BK4819_TransmitTone(true, 500); BK4819_TransmitTone(true, 500);
SYSTEM_DelayMs(2); SYSTEM_DelayMs(2);
GPIO_SetBit(&GPIOC->DATA, GPIOC_PIN_AUDIO_PATH); GPIO_SetBit(&GPIOC->DATA, GPIOC_PIN_AUDIO_PATH);
g_enable_speaker = true; g_enable_speaker = true;
g_alarm_tone_counter = 0; g_alarm_tone_counter = 0;
} }
} }
@ -2087,11 +2057,16 @@ void APP_TimeSlice500ms(void)
} }
#endif #endif
if (g_backlight_count_down > 0 && !g_ask_to_save && g_css_scan_mode == CSS_SCAN_MODE_OFF) if (g_backlight_count_down > 0 &&
!g_ask_to_save &&
g_css_scan_mode == CSS_SCAN_MODE_OFF &&
g_screen_to_display != DISPLAY_AIRCOPY)
{
if (g_screen_to_display != DISPLAY_MENU || g_menu_cursor != MENU_ABR) // don't turn off backlight if user is in backlight menu option if (g_screen_to_display != DISPLAY_MENU || g_menu_cursor != MENU_ABR) // don't turn off backlight if user is in backlight menu option
if (--g_backlight_count_down == 0) if (--g_backlight_count_down == 0)
if (g_eeprom.backlight < (ARRAY_SIZE(g_sub_menu_backlight) - 1)) if (g_eeprom.backlight < (ARRAY_SIZE(g_sub_menu_backlight) - 1))
GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_BACKLIGHT); // turn backlight off GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_BACKLIGHT); // turn backlight off
}
if (g_reduced_service) if (g_reduced_service)
{ {

View File

@ -27,8 +27,6 @@
#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0])) #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
#endif #endif
static const uint16_t FSK_RogerTable[7] = {0xF1A2, 0x7446, 0x61A4, 0x6544, 0x4E8A, 0xE044, 0xEA84};
static uint16_t gBK4819_GpioOutState; static uint16_t gBK4819_GpioOutState;
bool g_rx_idle_mode; bool g_rx_idle_mode;
@ -700,8 +698,8 @@ void BK4819_SetupPowerAmplifier(const uint8_t bias, const uint32_t frequency)
// 7 = max // 7 = max
// 0 = min // 0 = min
// //
// 280MHz gain 1 = 1 gain 2 = 0 gain 1 = 4 gain 2 = 2 // 280MHz gain 1 = 1 gain 2 = 0 gain 1 = 4 gain 2 = 2
const uint8_t gain = (frequency < 28000000) ? (1u << 3) | (0u << 0) : (4u << 3) | (2u << 0); const uint8_t gain = (frequency == 0) ? 0 : (frequency < 28000000) ? (1u << 3) | (0u << 0) : (4u << 3) | (2u << 0);
const uint8_t enable = 1; const uint8_t enable = 1;
BK4819_WriteRegister(BK4819_REG_36, ((uint16_t)bias << 8) | ((uint16_t)enable << 7) | ((uint16_t)gain << 0)); BK4819_WriteRegister(BK4819_REG_36, ((uint16_t)bias << 8) | ((uint16_t)enable << 7) | ((uint16_t)gain << 0));
} }
@ -1040,7 +1038,7 @@ void BK4819_PlaySingleTone(const unsigned int tone_Hz, const unsigned int delay,
// BK4819_SetAF(g_rx_vfo->am_mode ? BK4819_AF_AM : BK4819_AF_FM); // BK4819_SetAF(g_rx_vfo->am_mode ? BK4819_AF_AM : BK4819_AF_FM);
} }
BK4819_WriteRegister(BK4819_REG_70, 0x0000); BK4819_WriteRegister(BK4819_REG_70, 0);
BK4819_WriteRegister(BK4819_REG_30, 0xC1FE); BK4819_WriteRegister(BK4819_REG_30, 0xC1FE);
BK4819_ExitTxMute(); BK4819_ExitTxMute();
} }
@ -1078,39 +1076,9 @@ void BK4819_TurnsOffTones_TurnsOnRX(void)
BK4819_REG_30_ENABLE_RX_DSP); BK4819_REG_30_ENABLE_RX_DSP);
} }
#ifdef ENABLE_AIRCOPY
void BK4819_SetupAircopy(void)
{
BK4819_WriteRegister(BK4819_REG_70, 0x00E0); // Enable Tone2, tuning gain 48
BK4819_WriteRegister(BK4819_REG_72, 0x3065); // Tone2 baudrate 1200
BK4819_WriteRegister(BK4819_REG_58, 0x00C1); // FSK Enable
// FSK 1.2K RX Bandwidth
// Preamble 0xAA or 0x55
// RX Gain 0
// RX Mode
// (FSK1.2K, FSK2.4K Rx and NOAA SAME Rx)
// TX Mode FSK 1.2K
// FSK 2.4K Tx
BK4819_WriteRegister(BK4819_REG_5C, 0x5665); // Enable CRC among other things we don't know yet
BK4819_WriteRegister(BK4819_REG_5D, 0x4700); // FSK Data Length 72 Bytes (0xABCD + 2 byte length + 64 byte payload + 2 byte CRC + 0xDCBA)
}
#endif
void BK4819_ResetFSK(void)
{
BK4819_WriteRegister(BK4819_REG_3F, 0x0000); // Disable interrupts
BK4819_WriteRegister(BK4819_REG_59, 0x0068); // Sync length 4 bytes, 7 byte preamble
SYSTEM_DelayMs(30);
BK4819_Idle();
}
void BK4819_Idle(void) void BK4819_Idle(void)
{ {
BK4819_WriteRegister(BK4819_REG_30, 0x0000); BK4819_WriteRegister(BK4819_REG_30, 0);
} }
void BK4819_ExitBypass(void) void BK4819_ExitBypass(void)
@ -1235,7 +1203,7 @@ void BK4819_ExitDTMF_TX(bool bKeep)
{ {
BK4819_EnterTxMute(); BK4819_EnterTxMute();
BK4819_SetAF(BK4819_AF_MUTE); BK4819_SetAF(BK4819_AF_MUTE);
BK4819_WriteRegister(BK4819_REG_70, 0x0000); BK4819_WriteRegister(BK4819_REG_70, 0);
BK4819_DisableDTMF(); BK4819_DisableDTMF();
BK4819_WriteRegister(BK4819_REG_30, 0xC1FE); BK4819_WriteRegister(BK4819_REG_30, 0xC1FE);
if (!bKeep) if (!bKeep)
@ -1262,30 +1230,30 @@ void BK4819_PlayDTMF(char Code)
uint16_t tone1 = 0; uint16_t tone1 = 0;
uint16_t tone2 = 0; uint16_t tone2 = 0;
switch (Code) // Hz Hz switch (Code)
{ // {
case '0': tone1 = 9715; tone2 = 13793; break; // 941 1336 case '0': tone1 = 941; tone2 = 1336; break;
case '1': tone1 = 7196; tone2 = 12482; break; // 679 1209 case '1': tone1 = 679; tone2 = 1209; break;
case '2': tone1 = 7196; tone2 = 13793; break; // 697 1336 case '2': tone1 = 697; tone2 = 1336; break;
case '3': tone1 = 7196; tone2 = 15249; break; // 679 1477 case '3': tone1 = 679; tone2 = 1477; break;
case '4': tone1 = 7950; tone2 = 12482; break; // 770 1209 case '4': tone1 = 770; tone2 = 1209; break;
case '5': tone1 = 7950; tone2 = 13793; break; // 770 1336 case '5': tone1 = 770; tone2 = 1336; break;
case '6': tone1 = 7950; tone2 = 15249; break; // 770 1477 case '6': tone1 = 770; tone2 = 1477; break;
case '7': tone1 = 8796; tone2 = 12482; break; // 852 1209 case '7': tone1 = 852; tone2 = 1209; break;
case '8': tone1 = 8796; tone2 = 13793; break; // 852 1336 case '8': tone1 = 852; tone2 = 1336; break;
case '9': tone1 = 8796; tone2 = 15249; break; // 852 1477 case '9': tone1 = 852; tone2 = 1477; break;
case 'A': tone1 = 7196; tone2 = 16860; break; // 679 1633 case 'A': tone1 = 679; tone2 = 1633; break;
case 'B': tone1 = 7950; tone2 = 16860; break; // 770 1633 case 'B': tone1 = 770; tone2 = 1633; break;
case 'C': tone1 = 8796; tone2 = 16860; break; // 852 1633 case 'C': tone1 = 852; tone2 = 1633; break;
case 'D': tone1 = 9715; tone2 = 16860; break; // 941 1633 case 'D': tone1 = 941; tone2 = 1633; break;
case '*': tone1 = 9715; tone2 = 12482; break; // 941 1209 case '*': tone1 = 941; tone2 = 1209; break;
case '#': tone1 = 9715; tone2 = 15249; break; // 941 1477 case '#': tone1 = 941; tone2 = 1477; break;
} }
if (tone1 > 0) if (tone1 > 0)
BK4819_WriteRegister(BK4819_REG_71, tone1); BK4819_WriteRegister(BK4819_REG_71, (((uint32_t)tone1 * 103244) + 5000) / 10000); // with rounding
if (tone2 > 0) if (tone2 > 0)
BK4819_WriteRegister(BK4819_REG_72, tone2); BK4819_WriteRegister(BK4819_REG_72, (((uint32_t)tone2 * 103244) + 5000) / 10000); // with rounding
} }
void BK4819_PlayDTMFString(const char *pString, bool bDelayFirst, uint16_t FirstCodePersistTime, uint16_t HashCodePersistTime, uint16_t CodePersistTime, uint16_t CodeInternalTime) void BK4819_PlayDTMFString(const char *pString, bool bDelayFirst, uint16_t FirstCodePersistTime, uint16_t HashCodePersistTime, uint16_t CodePersistTime, uint16_t CodeInternalTime)
@ -1697,60 +1665,210 @@ uint8_t BK4819_GetCTCType(void)
{ {
return (BK4819_ReadRegister(BK4819_REG_0C) >> 10) & 3u; return (BK4819_ReadRegister(BK4819_REG_0C) >> 10) & 3u;
} }
/*
void BK4819_SendFSKData(uint16_t *pData) #ifdef ENABLE_AIRCOPY
void BK4819_SetupAircopy(const unsigned int packet_size)
{
if (packet_size == 0)
return;
// REG_70
//
// <15> 0 TONE-1
// 1 = enable
// 0 = disable
//
// <14:8> 0 TONE-1 gain
//
// <7> 0 TONE-2
// 1 = enable
// 0 = disable
//
// <6:0> 0 TONE-2 / FSK gain
// 0 ~ 127
//
// enable tone-2, set gain
//
BK4819_WriteRegister(BK4819_REG_70, // 0 0000000 1 1100000
( 0u << 15) |
( 0u << 8) |
( 1u << 7) |
(96u << 0));
// REG_72
//
// <15:0> 0x2854 TONE2/FSK frequency control word
// = freq(Hz) * 10.32444 for XTAL 13M / 26M or
// = freq(Hz) * 10.48576 for XTAL 12.8M / 19.2M / 25.6M / 38.4M
//
// tone-2 = 1200Hz
//
BK4819_WriteRegister(BK4819_REG_72, ((1200u * 103244) + 5000) / 10000); // with rounding
// these settings don't match the documentation at all ???
//
BK4819_WriteRegister(BK4819_REG_58, // 0x00C1); // 000 000 00 11 00 000 1
(0u << 13) | // 1 FSK TX mode selection
// 0 = FSK 1.2K and FSK 2.4K TX .. no tones, pure data
// 1 = FFSK 1200 / 1800 TX
// 2 = ???
// 3 = FFSK 1200 / 2400 TX
// 4 = ???
// 5 = NOAA SAME TX
// 6 = ???
// 7 = ???
//
(0u << 10) | // 0 FSK RX mode selection
// 0 = FSK 1.2K, FSK 2.4K RX and NOAA same RX
// 1 = ???
// 2 = ???
// 3 = ???
// 4 = FFSK 1200 / 2400 RX
// 5 = ???
// 6 = ???
// 7 = FFSK 1200 / 1800 RX
//
(0u << 8) | // 0 FSK RX gain
// 0 ~ 3
//
(3u << 6) | // 0 ???
// 0 ~ 3
//
(0u << 4) | // 0 FSK preamble type selection
// 0 = 0xAA or 0x55 due to the MSB of FSK sync byte 0
// 1 = ???
// 2 = 0x55
// 3 = 0xAA
//
(0u << 1) | // 1 FSK RX bandwidth setting
// 0 = FSK 1.2K
// 1 = FFSK 1200 / 1800
// 2 = NOAA same RX
// 3 = ???
// 4 = FSK 2.4K and FFSK 1200 / 2400
// 5 = ???
// 6 = ???
// 7 = ???
//
(1u << 0)); // 1 FSK enable
// 0 = disable
// 1 = enable
// REG_5C
//
// <15:7> ???
//
// <6> 1 CRC option enable
// 0 = disable
// 1 = enable
//
// <5:0> ???
//
// Enable CRC among other things we don't know yet
//
BK4819_WriteRegister(BK4819_REG_5C, 0x5665); // 010101100 1 100101
// REG_5D
//
// <15:8> 15 FSK data length (byte) Low 8 bits (total 11 bits for BK4819v3)
// 15 means 16 bytes in length
//
// <7:5> 0 FSK data
//
// <4:0> 0 ???
//
BK4819_WriteRegister(BK4819_REG_5D, ((packet_size - 1) << 8));
}
#endif
void BK4819_reset_fsk(void)
{ {
unsigned int i; BK4819_WriteRegister(BK4819_REG_3F, 0); // disable interrupts
uint8_t Timeout = 1000 / 5; // 1 second
SYSTEM_DelayMs(20); BK4819_WriteRegister(BK4819_REG_59, // 0x0068); // 0 0 0 0 0 0 0 0 0110 1 000
(0u << 15) | // 0 or 1 1 = clear TX FIFO
(0u << 14) | // 0 or 1 1 = clear RX FIFO
(0u << 13) | // 0 or 1 1 = scramble
(0u << 12) | // 0 or 1 1 = enable RX
(0u << 11) | // 0 or 1 1 = enable TX
(0u << 10) | // 0 or 1 1 = invert data when RX
(0u << 9) | // 0 or 1 1 = invert data when TX
(0u << 8) | // 0 or 1 ???
(6u << 4) | // 0 ~ 15 preamble Length Selection
(1u << 3) | // 0 or 1 sync length selection
(0u << 0)); // 0 ~ 7 ???
BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_TX_FINISHED); BK4819_Idle();
BK4819_WriteRegister(BK4819_REG_59, 0x8068);
BK4819_WriteRegister(BK4819_REG_59, 0x0068);
// load the packet
for (i = 0; i < 36; i++)
BK4819_WriteRegister(BK4819_REG_5F, pData[i]);
SYSTEM_DelayMs(20);
// start sending
BK4819_WriteRegister(BK4819_REG_59, 0x2868);
// wait till TX is done ?
while (Timeout-- && (BK4819_ReadRegister(BK4819_REG_0C) & (1u << 0)) == 0)
SYSTEM_DelayMs(5);
BK4819_WriteRegister(BK4819_REG_02, 0); // disable all interrupts
SYSTEM_DelayMs(20);
BK4819_ResetFSK();
} }
*/
void BK4819_PrepareFSKReceive(void)
{
BK4819_ResetFSK();
BK4819_WriteRegister(BK4819_REG_02, 0); void BK4819_start_fsk_rx(const unsigned int packet_size)
BK4819_WriteRegister(BK4819_REG_3F, 0); {
uint16_t fsk_reg59;
BK4819_reset_fsk();
BK4819_WriteRegister(BK4819_REG_02, 0); // clear interrupt flags
// set the packet size
BK4819_WriteRegister(BK4819_REG_5D, ((packet_size - 1) << 8));
BK4819_RX_TurnOn(); BK4819_RX_TurnOn();
// BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_RX_FINISHED | BK4819_REG_3F_FSK_FIFO_ALMOST_FULL);
BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_RX_SYNC | BK4819_REG_3F_FSK_RX_FINISHED | BK4819_REG_3F_FSK_FIFO_ALMOST_FULL); BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_RX_SYNC | BK4819_REG_3F_FSK_RX_FINISHED | BK4819_REG_3F_FSK_FIFO_ALMOST_FULL);
// BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_RX_FINISHED | BK4819_REG_3F_FSK_FIFO_ALMOST_FULL);
// Clear RX FIFO // REG_59
// FSK Preamble Length 7 bytes //
// FSK SyncLength Selection // <15> 0 TX FIFO
BK4819_WriteRegister(BK4819_REG_59, 0x4068); // 1 = clear
//
// <14> 0 RX FIFO
// 1 = clear
//
// <13> 0 FSK Scramble
// 1 = Enable
//
// <12> 0 FSK RX
// 1 = Enable
//
// <11> 0 FSK TX
// 1 = Enable
//
// <10> 0 FSK data when RX
// 1 = Invert
//
// <9> 0 FSK data when TX
// 1 = Invert
//
// <8> 0 ???
//
// <7:4> 0 FSK preamble length selection
// 0 = 1 byte
// 1 = 2 bytes
// 2 = 3 bytes
// 15 = 16 bytes
//
// <3> 0 FSK sync length selection
// 0 = 2 bytes (FSK Sync Byte 0, 1)
// 1 = 4 bytes (FSK Sync Byte 0, 1, 2, 3)
//
// <2:0> 0 ???
//
fsk_reg59 = (0u << 15) | // 0 or 1 1 = clear TX FIFO
(0u << 14) | // 0 or 1 1 = clear RX FIFO
(0u << 13) | // 0 or 1 1 = scramble
(0u << 12) | // 0 or 1 1 = enable RX
(0u << 11) | // 0 or 1 1 = enable TX
(0u << 10) | // 0 or 1 1 = invert data when RX
(0u << 9) | // 0 or 1 1 = invert data when TX
(0u << 8) | // 0 or 1 ???
// (6u << 4) | // 0 ~ 15 preamble Length Selection
(4u << 4) | // 0 ~ 15 preamble Length Selection .. 1of11 .. a little shorter than the TX length
(1u << 3) | // 0 or 1 sync length selection
(0u << 0); // 0 ~ 7 ???
// Enable FSK Scramble BK4819_WriteRegister(BK4819_REG_59, (1u << 14) | fsk_reg59); // clear RX fifo
// Enable FSK RX BK4819_WriteRegister(BK4819_REG_59, (1u << 13) | (1u << 12) | fsk_reg59); // enable scrambler, enable RX
// FSK Preamble Length 7 bytes
// FSK SyncLength Selection
BK4819_WriteRegister(BK4819_REG_59, 0x3068);
} }
void BK4819_PlayRoger(void) void BK4819_PlayRoger(void)
@ -1785,46 +1903,221 @@ void BK4819_PlayRoger(void)
SYSTEM_DelayMs(80); SYSTEM_DelayMs(80);
BK4819_EnterTxMute(); BK4819_EnterTxMute();
BK4819_WriteRegister(BK4819_REG_70, 0x0000); BK4819_WriteRegister(BK4819_REG_70, 0);
BK4819_WriteRegister(BK4819_REG_30, 0xC1FE); // 1 1 0000 0 1 1111 1 1 1 0 BK4819_WriteRegister(BK4819_REG_30, 0xC1FE); // 1 1 0000 0 1 1111 1 1 1 0
} }
void BK4819_PlayRogerMDC(void) void BK4819_PlayRogerMDC1200(void)
{ {
unsigned int i; static const uint8_t MDC1200_DATA[] = {
0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff,
// this needs properly computing for MDC1200
0xA2, 0xF1, 0x46, 0x74, 0xA4, 0x61, 0x44, 0x65, 0x8A, 0x4E, 0x44, 0xE0, 0x84, 0xEA
};
uint16_t fsk_reg59;
unsigned int timeout;
BK4819_SetAF(BK4819_AF_MUTE); BK4819_SetAF(BK4819_AF_MUTE);
BK4819_WriteRegister(BK4819_REG_58, 0x37C3); // FSK Enable, BK4819_WriteRegister(BK4819_REG_58, // 0x37C3); // 001 101 11 11 00 001 1
// RX Bandwidth FFSK 1200/1800 (1u << 13) | // 1 FSK TX mode selection
// 0xAA or 0x55 Preamble // 0 = FSK 1.2K and FSK 2.4K TX .. no tones, pure data
// 11 RX Gain, // 1 = FFSK 1200 / 1800 TX
// 101 RX Mode // 2 = ???
// TX FFSK 1200/1800 // 3 = FFSK 1200 / 2400 TX
BK4819_WriteRegister(BK4819_REG_72, 0x3065); // Set Tone-2 to 1200Hz // 4 = ???
BK4819_WriteRegister(BK4819_REG_70, 0x00E0); // Enable Tone-2 and Set Tone2 Gain // 5 = NOAA SAME TX
BK4819_WriteRegister(BK4819_REG_5D, 0x0D00); // Set FSK data length to 13 bytes // 6 = ???
BK4819_WriteRegister(BK4819_REG_59, 0x8068); // 4 byte sync length, 6 byte preamble, clear TX FIFO // 7 = ???
BK4819_WriteRegister(BK4819_REG_59, 0x0068); // Same, but clear TX FIFO is now unset (clearing done) //
BK4819_WriteRegister(BK4819_REG_5A, 0x5555); // First two sync bytes (0u << 10) | // 0 FSK RX mode selection
BK4819_WriteRegister(BK4819_REG_5B, 0x55AA); // End of sync bytes. Total 4 bytes: 555555aa // 0 = FSK 1.2K, FSK 2.4K RX and NOAA same RX
BK4819_WriteRegister(BK4819_REG_5C, 0xAA30); // Disable CRC // 1 = ???
// 2 = ???
// 3 = ???
// 4 = FFSK 1200 / 2400 RX
// 5 = ???
// 6 = ???
// 7 = FFSK 1200 / 1800 RX
//
(0u << 8) | // 0 FSK RX gain
// 0 ~ 3
//
(0u << 6) | // 0 ???
// 0 ~ 3
//
(0u << 4) | // 0 FSK preamble type selection
// 0 = 0xAA or 0x55 due to the MSB of FSK sync byte 0
// 1 = ???
// 2 = 0x55
// 3 = 0xAA
//
(1u << 1) | // 1 FSK RX bandwidth setting
// 0 = FSK 1.2K
// 1 = FFSK 1200 / 1800
// 2 = NOAA same RX
// 3 = ???
// 4 = FSK 2.4K and FFSK 1200 / 2400
// 5 = ???
// 6 = ???
// 7 = ???
//
(1u << 0)); // 1 FSK enable
// 0 = disable
// 1 = enable
// Send the data from the roger table // REG_72
for (i = 0; i < 7; i++) //
BK4819_WriteRegister(BK4819_REG_5F, FSK_RogerTable[i]); // <15:0> 0x2854 TONE-2 / FSK frequency control word
// = freq(Hz) * 10.32444 for XTAL 13M / 26M or
// = freq(Hz) * 10.48576 for XTAL 12.8M / 19.2M / 25.6M / 38.4M
//
// tone-2 = 1200Hz
//
BK4819_WriteRegister(BK4819_REG_72, ((1200u * 103244) + 5000) / 10000); // with rounding
SYSTEM_DelayMs(20); // REG_70
//
// <15> 0 TONE-1
// 1 = enable
// 0 = disable
//
// <14:8> 0 TONE-1 gain
//
// <7> 0 TONE-2
// 1 = enable
// 0 = disable
//
// <6:0> 0 TONE-2 / FSK gain
// 0 ~ 127
//
// enable tone-2, set gain
//
BK4819_WriteRegister(BK4819_REG_70, // 0 0000000 1 1100000
( 0u << 15) |
( 0u << 8) |
( 1u << 7) |
(96u << 0));
// 4 sync bytes, 6 byte preamble, Enable FSK TX // Set FSK data length
BK4819_WriteRegister(BK4819_REG_59, 0x0868); BK4819_WriteRegister(BK4819_REG_5D, ((sizeof(MDC1200_DATA) - 1) << 8));
SYSTEM_DelayMs(180); // REG_59
//
// <15> 0 TX FIFO
// 1 = clear
//
// <14> 0 RX FIFO
// 1 = clear
//
// <13> 0 FSK Scramble
// 1 = Enable
//
// <12> 0 FSK RX
// 1 = Enable
//
// <11> 0 FSK TX
// 1 = Enable
//
// <10> 0 FSK data when RX
// 1 = Invert
//
// <9> 0 FSK data when TX
// 1 = Invert
//
// <8> 0 ???
//
// <7:4> 0 FSK preamble length selection
// 0 = 1 byte
// 1 = 2 bytes
// 2 = 3 bytes
// 15 = 16 bytes
//
// <3> 0 FSK sync length selection
// 0 = 2 bytes (FSK Sync Byte 0, 1)
// 1 = 4 bytes (FSK Sync Byte 0, 1, 2, 3)
//
// <2:0> 0 ???
//
fsk_reg59 = (0u << 15) | // 0 or 1 1 = clear TX FIFO
(0u << 14) | // 0 or 1 1 = clear RX FIFO
(0u << 13) | // 0 or 1 1 = scramble
(0u << 12) | // 0 or 1 1 = enable RX
(0u << 11) | // 0 or 1 1 = enable TX
(0u << 10) | // 0 or 1 1 = invert data when RX
(0u << 9) | // 0 or 1 1 = invert data when TX
(0u << 8) | // 0 or 1 ???
(0u << 4) | // 0 ~ 15 preamble length selection
(0u << 3) | // 0 or 1 sync length selection
(0u << 0); // 0 ~ 7 ???
// Stop FSK TX, reset Tone-2, disable FSK BK4819_WriteRegister(BK4819_REG_59, (1u << 15) | fsk_reg59); // clear TX fifo
BK4819_WriteRegister(BK4819_REG_59, 0x0068); BK4819_WriteRegister(BK4819_REG_59, fsk_reg59);
BK4819_WriteRegister(BK4819_REG_70, 0x0000);
BK4819_WriteRegister(BK4819_REG_58, 0x0000); // REG_5A
// <15:8> 0x55 FSK Sync Byte 0 (Sync Byte 0 first, then 1,2,3)
// <7:0> 0x55 FSK Sync Byte 1
//
// BK4819_WriteRegister(BK4819_REG_5A, 0x5555);
BK4819_WriteRegister(BK4819_REG_5A, 0xAAAA);
// REG_5B
// <15:8> 0x55 FSK Sync Byte 2 (Sync Byte 0 first, then 1,2,3)
// <7:0> 0xAA FSK Sync Byte 3
//
// BK4819_WriteRegister(BK4819_REG_5B, 0x55AA);
// Enable CRC among other things we don't know yet
//
// REG_5C
//
// <15:7> ???
//
// <6> 1 CRC option enable
// 0 = disable
// 1 = enable
//
// <5:0> ???
//
// disable CRC
//
BK4819_WriteRegister(BK4819_REG_5C, 0xAA30); // 101010100 0 110000
{ // load the packet data
unsigned int i;
const uint16_t *p = (const uint16_t *)MDC1200_DATA;
for (i = 0; i < (sizeof(MDC1200_DATA) / 2); i++)
BK4819_WriteRegister(BK4819_REG_5F, p[i]);
}
// enable tx interrupt
BK4819_WriteRegister(BK4819_REG_3F, BK4819_REG_3F_FSK_TX_FINISHED);
// enable TX
BK4819_WriteRegister(BK4819_REG_59, (1u << 11) | fsk_reg59);
// packet is 175ms long
timeout = 250 / 5; // allow up to 250ms for the TX to complete
while (timeout-- > 0)
{
SYSTEM_DelayMs(5);
if (BK4819_ReadRegister(BK4819_REG_0C) & (1u << 0))
{ // we have interrupt flags
uint16_t interrupt_bits;
BK4819_WriteRegister(BK4819_REG_02, 0);
interrupt_bits = BK4819_ReadRegister(BK4819_REG_02);
if (interrupt_bits & BK4819_REG_02_FSK_TX_FINISHED)
timeout = 0; // TX is complete
}
}
// disable TX
BK4819_WriteRegister(BK4819_REG_59, fsk_reg59);
BK4819_WriteRegister(BK4819_REG_3F, 0); // disable interrupts
BK4819_WriteRegister(BK4819_REG_70, 0);
BK4819_WriteRegister(BK4819_REG_58, 0);
} }
void BK4819_Enable_AfDac_DiscMode_TxDsp(void) void BK4819_Enable_AfDac_DiscMode_TxDsp(void)

View File

@ -105,9 +105,9 @@ void BK4819_ExitTxMute(void);
void BK4819_Sleep(void); void BK4819_Sleep(void);
void BK4819_TurnsOffTones_TurnsOnRX(void); void BK4819_TurnsOffTones_TurnsOnRX(void);
#ifdef ENABLE_AIRCOPY #ifdef ENABLE_AIRCOPY
void BK4819_SetupAircopy(void); void BK4819_SetupAircopy(const unsigned int packet_size);
#endif #endif
void BK4819_ResetFSK(void); void BK4819_reset_fsk(void);
void BK4819_Idle(void); void BK4819_Idle(void);
void BK4819_ExitBypass(void); void BK4819_ExitBypass(void);
void BK4819_PrepareTransmit(void); void BK4819_PrepareTransmit(void);
@ -151,11 +151,10 @@ uint8_t BK4819_get_CDCSS_code_type(void);
uint8_t BK4819_GetCTCShift(void); uint8_t BK4819_GetCTCShift(void);
uint8_t BK4819_GetCTCType(void); uint8_t BK4819_GetCTCType(void);
//void BK4819_SendFSKData(uint16_t *pData); void BK4819_start_fsk_rx(const unsigned int packet_size);
void BK4819_PrepareFSKReceive(void);
void BK4819_PlayRoger(void); void BK4819_PlayRoger(void);
void BK4819_PlayRogerMDC(void); void BK4819_PlayRogerMDC1200(void);
void BK4819_Enable_AfDac_DiscMode_TxDsp(void); void BK4819_Enable_AfDac_DiscMode_TxDsp(void);

View File

@ -19,32 +19,30 @@
void CRC_Init(void) void CRC_Init(void)
{ {
CRC_CR = 0 CRC_CR =
| CRC_CR_CRC_EN_BITS_DISABLE CRC_CR_CRC_EN_BITS_DISABLE
| CRC_CR_INPUT_REV_BITS_NORMAL | CRC_CR_INPUT_REV_BITS_NORMAL
| CRC_CR_INPUT_INV_BITS_NORMAL | CRC_CR_INPUT_INV_BITS_NORMAL
| CRC_CR_OUTPUT_REV_BITS_NORMAL | CRC_CR_OUTPUT_REV_BITS_NORMAL
| CRC_CR_OUTPUT_INV_BITS_NORMAL | CRC_CR_OUTPUT_INV_BITS_NORMAL
| CRC_CR_DATA_WIDTH_BITS_8 | CRC_CR_DATA_WIDTH_BITS_8
| CRC_CR_CRC_SEL_BITS_CRC_16_CCITT | CRC_CR_CRC_SEL_BITS_CRC_16_CCITT;
;
CRC_IV = 0; CRC_IV = 0;
} }
uint16_t CRC_Calculate(const void *pBuffer, uint16_t Size) uint16_t CRC_Calculate(const void *pBuffer, uint16_t Size)
{ {
const uint8_t *pData = (const uint8_t *)pBuffer; const uint8_t *data = (const uint8_t *)pBuffer;
uint16_t i, Crc; uint16_t i;
uint16_t crc;
CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_ENABLE; CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_ENABLE;
for (i = 0; i < Size; i++) { for (i = 0; i < Size; i++)
CRC_DATAIN = pData[i]; CRC_DATAIN = data[i];
} crc = (uint16_t)CRC_DATAOUT;
Crc = (uint16_t)CRC_DATAOUT;
CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_DISABLE; CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_DISABLE;
return Crc; return crc;
} }

Binary file not shown.

Binary file not shown.

View File

@ -30,24 +30,24 @@ const freq_band_table_t BX4819_BAND2 = {84000000, 130000000};
const freq_band_table_t FREQ_BAND_TABLE[7] = const freq_band_table_t FREQ_BAND_TABLE[7] =
{ {
#ifndef ENABLE_WIDE_RX #ifdef ENABLE_WIDE_RX
// QS original
{ 5000000, 7600000},
{10800000, 13600000},
{13600000, 17400000},
{17400000, 35000000},
{35000000, 40000000},
{40000000, 47000000},
{47000000, 60000000}
#else
// extended range // extended range
{ 1800000, 10800000}, { 1800000, 10800000}, // band 1
{10800000, 13600000}, {10800000, 13600000}, // band 2
{13600000, 17400000}, {13600000, 17400000}, // band 3
{17400000, 35000000}, {17400000, 35000000}, // band 4
{35000000, 40000000}, {35000000, 40000000}, // band 5
{40000000, 47000000}, {40000000, 47000000}, // band 6
{47000000, 130000000} {47000000, 130000000} // band 7
#else
// QS original
{ 5000000, 7600000}, // band 1
{10800000, 13600000}, // band 2
{13600000, 17400000}, // band 3
{17400000, 35000000}, // band 4
{35000000, 40000000}, // band 5
{40000000, 47000000}, // band 6
{47000000, 60000000} // band 7
#endif #endif
}; };

View File

@ -226,10 +226,7 @@ void FUNCTION_Select(function_type_t Function)
GUI_DisplayScreen(); GUI_DisplayScreen();
RADIO_SetTxParameters(); RADIO_enableTX(false);
// turn the RED LED on
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, true);
DTMF_Reply(); DTMF_Reply();

View File

@ -89,13 +89,7 @@ void BOOT_ProcessMode(boot_mode_t Mode)
g_current_vfo = g_rx_vfo; g_current_vfo = g_rx_vfo;
RADIO_SetupRegisters(true); AIRCOPY_init();
BK4819_SetupAircopy();
BK4819_ResetFSK();
g_aircopy_state = AIRCOPY_READY;
GUI_SelectNextDisplay(DISPLAY_AIRCOPY);
} }
#endif #endif
else else

76
radio.c
View File

@ -34,6 +34,7 @@
#include "radio.h" #include "radio.h"
#include "settings.h" #include "settings.h"
#include "ui/menu.h" #include "ui/menu.h"
#include "ui/ui.h"
vfo_info_t *g_tx_vfo; vfo_info_t *g_tx_vfo;
vfo_info_t *g_rx_vfo; vfo_info_t *g_rx_vfo;
@ -613,21 +614,19 @@ void RADIO_SetupRegisters(bool bSwitchToFunction0)
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, false); BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, false); // LED off
BK4819_SetupPowerAmplifier(0, 0); BK4819_SetupPowerAmplifier(0, 0);
BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, false); // ???
BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, false);
while (1) while (1)
{ { // wait for the interrupt to clear ???
const uint16_t Status = BK4819_ReadRegister(BK4819_REG_0C); const uint16_t status_bits = BK4819_ReadRegister(BK4819_REG_0C);
if ((Status & 1u) == 0) // INTERRUPT REQUEST if ((status_bits & (1u << 0)) == 0)
break; break;
BK4819_WriteRegister(BK4819_REG_02, 0); // clear the interrupt bits
BK4819_WriteRegister(BK4819_REG_02, 0);
SYSTEM_DelayMs(1); SYSTEM_DelayMs(1);
} }
BK4819_WriteRegister(BK4819_REG_3F, 0); BK4819_WriteRegister(BK4819_REG_3F, 0);
// mic gain 0.5dB/step 0 to 31 // mic gain 0.5dB/step 0 to 31
@ -837,7 +836,7 @@ void RADIO_SetupRegisters(bool bSwitchToFunction0)
} }
#endif #endif
void RADIO_SetTxParameters(void) void RADIO_enableTX(const bool fsk_tx)
{ {
BK4819_filter_bandwidth_t Bandwidth = g_current_vfo->channel_bandwidth; BK4819_filter_bandwidth_t Bandwidth = g_current_vfo->channel_bandwidth;
@ -845,7 +844,7 @@ void RADIO_SetTxParameters(void)
g_enable_speaker = false; g_enable_speaker = false;
BK4819_set_GPIO_pin(BK4819_GPIO6_PIN2, false); BK4819_set_GPIO_pin(BK4819_GPIO6_PIN2, false); // ???
#pragma GCC diagnostic push #pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough=" #pragma GCC diagnostic ignored "-Wimplicit-fallthrough="
@ -868,39 +867,38 @@ void RADIO_SetTxParameters(void)
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
BK4819_SetFrequency(g_current_vfo->p_tx->frequency); BK4819_SetFrequency(g_current_vfo->p_tx->frequency);
BK4819_SetCompander((!fsk_tx && g_rx_vfo->am_mode == 0 && (g_rx_vfo->compander == 1 || g_rx_vfo->compander >= 3)) ? g_rx_vfo->compander : 0);
// TX compressor
BK4819_SetCompander((g_rx_vfo->am_mode == 0 && (g_rx_vfo->compander == 1 || g_rx_vfo->compander >= 3)) ? g_rx_vfo->compander : 0);
BK4819_PrepareTransmit(); BK4819_PrepareTransmit();
SYSTEM_DelayMs(10);
BK4819_PickRXFilterPathBasedOnFrequency(g_current_vfo->p_tx->frequency); BK4819_PickRXFilterPathBasedOnFrequency(g_current_vfo->p_tx->frequency);
BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, true); // ???
if (g_screen_to_display != DISPLAY_AIRCOPY)
BK4819_SetupPowerAmplifier(g_current_vfo->txp_calculated_setting, g_current_vfo->p_tx->frequency);
else
BK4819_SetupPowerAmplifier(0, g_current_vfo->p_tx->frequency); // very low power when in AIRCOPY mode
BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_RED, true); // turn the RED LED on
BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1, true); if (fsk_tx)
SYSTEM_DelayMs(5);
BK4819_SetupPowerAmplifier(g_current_vfo->txp_calculated_setting, g_current_vfo->p_tx->frequency);
SYSTEM_DelayMs(10);
switch (g_current_vfo->p_tx->code_type)
{ {
default: BK4819_ExitSubAu();
case CODE_TYPE_NONE: }
BK4819_ExitSubAu(); else
break; {
switch (g_current_vfo->p_tx->code_type)
{
default:
case CODE_TYPE_NONE:
BK4819_ExitSubAu();
break;
case CODE_TYPE_CONTINUOUS_TONE: case CODE_TYPE_CONTINUOUS_TONE:
BK4819_SetCTCSSFrequency(CTCSS_OPTIONS[g_current_vfo->p_tx->code]); BK4819_SetCTCSSFrequency(CTCSS_OPTIONS[g_current_vfo->p_tx->code]);
break; break;
case CODE_TYPE_DIGITAL: case CODE_TYPE_DIGITAL:
case CODE_TYPE_REVERSE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL:
BK4819_SetCDCSSCodeWord(DCS_GetGolayCodeWord(g_current_vfo->p_tx->code_type, g_current_vfo->p_tx->code)); BK4819_SetCDCSSCodeWord(DCS_GetGolayCodeWord(g_current_vfo->p_tx->code_type, g_current_vfo->p_tx->code));
break; break;
}
} }
} }
@ -1089,7 +1087,7 @@ void RADIO_SendEndOfTransmission(void)
BK4819_PlayRoger(); BK4819_PlayRoger();
else else
if (g_eeprom.roger_mode == ROGER_MODE_MDC) if (g_eeprom.roger_mode == ROGER_MODE_MDC)
BK4819_PlayRogerMDC(); BK4819_PlayRogerMDC1200();
if (g_current_vfo->dtmf_ptt_id_tx_mode == PTT_ID_APOLLO) if (g_current_vfo->dtmf_ptt_id_tx_mode == PTT_ID_APOLLO)
BK4819_PlaySingleTone(APOLLO_TONE2_HZ, APOLLO_TONE_MS, 28, g_eeprom.dtmf_side_tone); BK4819_PlaySingleTone(APOLLO_TONE2_HZ, APOLLO_TONE_MS, 28, g_eeprom.dtmf_side_tone);

View File

@ -137,7 +137,7 @@ void RADIO_SetupRegisters(bool bSwitchToFunction0);
#ifdef ENABLE_NOAA #ifdef ENABLE_NOAA
void RADIO_ConfigureNOAA(void); void RADIO_ConfigureNOAA(void);
#endif #endif
void RADIO_SetTxParameters(void); void RADIO_enableTX(const bool fsk_tx);
void RADIO_Setg_vfo_state(vfo_state_t State); void RADIO_Setg_vfo_state(vfo_state_t State);
void RADIO_PrepareTX(void); void RADIO_PrepareTX(void);

View File

@ -24,11 +24,16 @@
#include "ui/aircopy.h" #include "ui/aircopy.h"
#include "ui/helper.h" #include "ui/helper.h"
#include "ui/inputbox.h" #include "ui/inputbox.h"
#include "ui/ui.h"
void UI_DisplayAircopy(void) void UI_DisplayAircopy(void)
{ {
const uint8_t errors = g_aircopy_rx_errors_fsk_crc + g_aircopy_rx_errors_magic + g_aircopy_rx_errors_crc;
char str[17]; char str[17];
if (g_screen_to_display != DISPLAY_AIRCOPY)
return;
// clear screen/display buffer // clear screen/display buffer
memset(g_frame_buffer, 0, sizeof(g_frame_buffer)); memset(g_frame_buffer, 0, sizeof(g_frame_buffer));
@ -78,7 +83,7 @@ void UI_DisplayAircopy(void)
break; break;
case AIRCOPY_RX_COMPLETE: case AIRCOPY_RX_COMPLETE:
if (g_aircopy_rx_errors == 0) if (errors == 0)
{ {
UI_PrintString("RX COMPLETE", 0, LCD_WIDTH - 1, 5, 8); UI_PrintString("RX COMPLETE", 0, LCD_WIDTH - 1, 5, 8);
break; break;
@ -86,8 +91,17 @@ void UI_DisplayAircopy(void)
case AIRCOPY_RX: case AIRCOPY_RX:
sprintf(str, "RX %u.%u", g_aircopy_block_number, g_aircopy_block_max); sprintf(str, "RX %u.%u", g_aircopy_block_number, g_aircopy_block_max);
if (g_aircopy_rx_errors > 0) if (errors > 0)
sprintf(str + strlen(str), " E %u", g_aircopy_rx_errors); {
#if 1
sprintf(str + strlen(str), " E %u", errors);
#else
sprintf(str + strlen(str), " E %u %u %u",
g_aircopy_rx_errors_fsk_crc,
g_aircopy_rx_errors_magic,
g_aircopy_rx_errors_crc);
#endif
}
UI_PrintString(str, 0, LCD_WIDTH - 1, 5, 7); UI_PrintString(str, 0, LCD_WIDTH - 1, 5, 7);
break; break;