#include "driver/bk4819.h" #include "driver/crc.h" #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) #include "driver/uart.h" #endif #include "mdc1200.h" #include "misc.h" // ********************************************************** // pre-amble and sync pattern // // >= 24-bit pre-amble // 40-bit sync // const uint8_t mdc1200_pre_amble[] = {0x00, 0x00, 0x00}; const uint8_t mdc1200_sync[5] = {0x07, 0x09, 0x2a, 0x44, 0x6f}; // // before successive bit xorring: // 0x07092A446F // 0000 0111 0000 1001 0010 1010 0100 0100 0110 1111 // // after successive bit xorring: // // 0000 0100 1000 1101 1011 1111 0110 0110 0101 1000 // 0x048DBF6658 // // 1111 1011 0111 0010 0100 0000 1001 1001 1010 0111 .. bit inverted // 0xFB724099A7 // uint8_t mdc1200_sync_suc_xor[sizeof(mdc1200_sync)]; /* uint8_t bit_reverse_8(uint8_t n) { n = ((n >> 1) & 0x55u) | ((n << 1) & 0xAAu); n = ((n >> 2) & 0x33u) | ((n << 2) & 0xCCu); n = ((n >> 4) & 0x0Fu) | ((n << 4) & 0xF0u); return n; } uint16_t bit_reverse_16(uint16_t n) { // untested n = ((n >> 1) & 0x5555u) | ((n << 1) & 0xAAAAu); n = ((n >> 2) & 0x3333u) | ((n << 2) & 0xCCCCu); n = ((n >> 4) & 0x0F0Fu) | ((n << 4) & 0xF0F0u); n = ((n >> 8) & 0x00FFu) | ((n << 8) & 0xFF00u); return n; } uint32_t bit_reverse_32(uint32_t n) { n = ((n >> 1) & 0x55555555u) | ((n << 1) & 0xAAAAAAAAu); n = ((n >> 2) & 0x33333333u) | ((n << 2) & 0xCCCCCCCCu); n = ((n >> 4) & 0x0F0F0F0Fu) | ((n << 4) & 0xF0F0F0F0u); n = ((n >> 8) & 0x00FF00FFu) | ((n << 8) & 0xFF00FF00u); n = ((n >> 16) & 0x0000FFFFu) | ((n << 16) & 0xFFFF0000u); return n; } */ // ************************************ // common #if 1 uint16_t compute_crc(const void *data, const unsigned int data_len) { // let the CPU's hardware do some work :) uint16_t crc; CRC_InitReverse(); crc = CRC_Calculate(data, data_len); CRC_Init(); return crc; } #elif 1 uint16_t compute_crc(const void *data, const unsigned int data_len) { // using the reverse computation and polynominal avoids having to reverse the bit order during and after unsigned int i; const uint8_t *data8 = (const uint8_t *)data; uint16_t crc = 0; for (i = 0; i < data_len; i++) { unsigned int k; crc ^= data8[i]; for (k = 8; k > 0; k--) crc = (crc & 1u) ? (crc >> 1) ^ 0x8408 : crc >> 1; } return crc ^ 0xffff; } #else uint16_t compute_crc(const void *data, const unsigned int data_len) { unsigned int i; const uint8_t *data8 = (const uint8_t *)data; uint16_t crc = 0; for (i = 0; i < data_len; i++) { uint8_t mask; // bit reverse each data byte const uint8_t bits = bit_reverse_8(*data8++); for (mask = 0x0080; mask != 0; mask >>= 1) { uint16_t msb = crc & 0x8000; if (bits & mask) msb ^= 0x8000; crc <<= 1; if (msb) crc ^= 0x1021; } } // bit reverse and invert the final CRC return bit_reverse_16(crc) ^ 0xffff; } #endif // ************************************ // RX void error_correction(void *data) { // can correct up to 3 or 4 corrupted bits (I think) int i; uint8_t shift_reg; uint8_t syn; uint8_t *data8 = (uint8_t *)data; for (i = 0, shift_reg = 0, syn = 0; i < MDC1200_FEC_K; i++) { const uint8_t bi = data8[i]; int bit_num; for (bit_num = 0; bit_num < 8; bit_num++) { uint8_t b; unsigned int k = 0; shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); b = ((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u; syn = (syn << 1) | (((b ^ (data8[i + MDC1200_FEC_K] >> bit_num)) & 1u) ? 1u : 0u); if (syn & 0x80) k++; if (syn & 0x20) k++; if (syn & 0x04) k++; if (syn & 0x02) k++; if (k >= 3) { // correct a bit error int ii = i; int bn = bit_num - 7; if (bn < 0) { bn += 8; ii--; } if (ii >= 0) data8[ii] ^= 1u << bn; // fix a bit syn ^= 0xA6; // 10100110 } } } } /* void xor_demodulation(void *data, const unsigned int size, const bool sync_inverted) { unsigned int i; uint8_t *data8 = (uint8_t *)data; uint8_t prev_bit = 0; for (i = 0; i < size; i++) { int bit_num; uint8_t in = data8[i]; uint8_t out = 0; for (bit_num = 7; bit_num >= 0; bit_num--) { const uint8_t new_bit = (in >> bit_num) & 1u; uint8_t bit = prev_bit ^ new_bit; if (sync_inverted) bit ^= 1u; prev_bit = new_bit; out |= bit << bit_num; } data8[i] = out; } } */ bool decode_data(void *data) { uint16_t crc1; uint16_t crc2; uint8_t *data8 = (uint8_t *)data; { // de-interleave unsigned int i; unsigned int k; unsigned int m; uint8_t deinterleaved[(MDC1200_FEC_K * 2) * 8]; // temp individual bit storage // interleave order // 0, 16, 32, 48, 64, 80, 96, // 1, 17, 33, 49, 65, 81, 97, // 2, 18, 34, 50, 66, 82, 98, // 3, 19, 35, 51, 67, 83, 99, // 4, 20, 36, 52, 68, 84, 100, // 5, 21, 37, 53, 69, 85, 101, // 6, 22, 38, 54, 70, 86, 102, // 7, 23, 39, 55, 71, 87, 103, // 8, 24, 40, 56, 72, 88, 104, // 9, 25, 41, 57, 73, 89, 105, // 10, 26, 42, 58, 74, 90, 106, // 11, 27, 43, 59, 75, 91, 107, // 12, 28, 44, 60, 76, 92, 108, // 13, 29, 45, 61, 77, 93, 109, // 14, 30, 46, 62, 78, 94, 110, // 15, 31, 47, 63, 79, 95, 111 // de-interleave the received bits for (i = 0, k = 0; i < 16; i++) { for (m = 0; m < MDC1200_FEC_K; m++) { const unsigned int n = (m * 16) + i; deinterleaved[k++] = (data8[n >> 3] >> ((7 - n) & 7u)) & 1u; } } // copy the de-interleaved bits back into the data buffer for (i = 0, m = 0; i < (MDC1200_FEC_K * 2); i++) { unsigned int k; uint8_t b = 0; for (k = 0; k < 8; k++) if (deinterleaved[m++]) b |= 1u << k; data8[i] = b; } } // try to correct the odd corrupted bit error_correction(data); // rx'ed de-interleaved data (min 14 bytes) looks like this .. // // OP ARG ID CRC STATUS FEC bits // 01 80 1234 2E3E 00 6580A862DD8808 crc1 = compute_crc(data, 4); crc2 = ((uint16_t)data8[5] << 8) | (data8[4] << 0); return (crc1 == crc2) ? true : false; } // ********************************************************** // TX void xor_modulation(void *data, const unsigned int size) { // exclusive-or succesive bits - the entire packet unsigned int i; uint8_t *data8 = (uint8_t *)data; uint8_t prev_bit = 0; for (i = 0; i < size; i++) { int bit_num; uint8_t in = data8[i]; uint8_t out = 0; for (bit_num = 7; bit_num >= 0; bit_num--) { const uint8_t new_bit = (in >> bit_num) & 1u; if (new_bit != prev_bit) out |= 1u << bit_num; // previous bit and new bit are different - send a '1' prev_bit = new_bit; } data8[i] = out ^ 0xff; } } uint8_t * encode_data(void *data) { // R=1/2 K=7 convolutional coder // // OP ARG ID CRC STATUS FEC bits // 01 80 1234 2E3E 00 6580A862DD8808 // // 1. reverse the bit order for each byte of the first 7 bytes (to undo the reversal performed for display, above) // 2. feed those bits into a shift register which is preloaded with all zeros // 3. for each bit, calculate the modulo-2 sum: bit(n-0) + bit(n-2) + bit(n-5) + bit(n-6) // 4. then for each byte of resulting output, again reverse those bits to generate the values shown above uint8_t *data8 = (uint8_t *)data; { // add the FEC bits to the end of the data unsigned int i; uint8_t shift_reg = 0; for (i = 0; i < MDC1200_FEC_K; i++) { unsigned int bit_num; const uint8_t bi = data8[i]; uint8_t bo = 0; for (bit_num = 0; bit_num < 8; bit_num++) { shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); bo |= (((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u) << bit_num; } data8[MDC1200_FEC_K + i] = bo; } } // 01 00 00 23 DD F0 00 65 00 00 0F 45 1F 21 /* #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) { const unsigned int size = MDC1200_FEC_K * 2; unsigned int i; UART_printf("mdc1200 tx1 %u ", size); for (i = 0; i < size; i++) UART_printf(" %02X", data8[i]); UART_SendText("\r\n"); } #endif */ { // interleave the bits unsigned int i; unsigned int k; uint8_t interleaved[(MDC1200_FEC_K * 2) * 8]; // temp individual bit storage // interleave order // 0, 16, 32, 48, 64, 80, 96, // 1, 17, 33, 49, 65, 81, 97, // 2, 18, 34, 50, 66, 82, 98, // 3, 19, 35, 51, 67, 83, 99, // 4, 20, 36, 52, 68, 84, 100, // 5, 21, 37, 53, 69, 85, 101, // 6, 22, 38, 54, 70, 86, 102, // 7, 23, 39, 55, 71, 87, 103, // 8, 24, 40, 56, 72, 88, 104, // 9, 25, 41, 57, 73, 89, 105, // 10, 26, 42, 58, 74, 90, 106, // 11, 27, 43, 59, 75, 91, 107, // 12, 28, 44, 60, 76, 92, 108, // 13, 29, 45, 61, 77, 93, 109, // 14, 30, 46, 62, 78, 94, 110, // 15, 31, 47, 63, 79, 95, 111 // bit interleaver for (i = 0, k = 0; i < (MDC1200_FEC_K * 2); i++) { unsigned int bit_num; const uint8_t b = data8[i]; for (bit_num = 0; bit_num < 8; bit_num++) { interleaved[k] = (b >> bit_num) & 1u; k += 16; if (k >= sizeof(interleaved)) k -= sizeof(interleaved) - 1; } } // copy the interleaved bits back to the data buffer for (i = 0, k = 0; i < (MDC1200_FEC_K * 2); i++) { int bit_num; uint8_t b = 0; for (bit_num = 7; bit_num >= 0; bit_num--) if (interleaved[k++]) b |= 1u << bit_num; data8[i] = b; } } return data8 + (MDC1200_FEC_K * 2); } unsigned int MDC1200_encode_single_packet(void *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id) { unsigned int size; uint16_t crc; uint8_t *p = (uint8_t *)data; memcpy(p, mdc1200_pre_amble, sizeof(mdc1200_pre_amble)); p += sizeof(mdc1200_pre_amble); memcpy(p, mdc1200_sync, sizeof(mdc1200_sync)); p += sizeof(mdc1200_sync); p[0] = op; p[1] = arg; p[2] = (unit_id >> 8) & 0x00ff; p[3] = (unit_id >> 0) & 0x00ff; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // unknown field (00 for PTTIDs, 76 for STS and MSG) p = encode_data(p); size = (unsigned int)(p - (uint8_t *)data); /* #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) { unsigned int i; const uint8_t *data8 = (const uint8_t *)data; UART_printf("mdc1200 tx2 %u ", size); for (i = 0; i < size; i++) UART_printf(" %02X", data8[i]); UART_SendText("\r\n"); } #endif */ xor_modulation(data, size); return size; } /* unsigned int MDC1200_encode_double_packet(void *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id, const uint8_t b0, const uint8_t b1, const uint8_t b2, const uint8_t b3) { unsigned int size; uint16_t crc; uint8_t *p = (uint8_t *)data; memcpy(p, mdc1200_pre_amble, sizeof(mdc1200_pre_amble)); p += sizeof(mdc1200_pre_amble); memcpy(p, mdc1200_sync, sizeof(mdc1200_sync)); p += sizeof(mdc1200_sync); p[0] = op; p[1] = arg; p[2] = (unit_id >> 8) & 0x00ff; p[3] = (unit_id >> 0) & 0x00ff; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // status byte p = encode_data(p); p[0] = b0; p[1] = b1; p[2] = b2; p[3] = b3; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // status byte p = encode_data(p); size = (unsigned int)(p - (uint8_t *)data); xor_modulation(data, size); return size; } */ // ********************************************************** // RX struct { uint8_t bit; uint8_t prev_bit; uint8_t xor_bit; uint64_t shift_reg; unsigned int bit_count; unsigned int stage; bool inverted_sync; unsigned int data_index; uint8_t data[40]; } rx; void MDC1200_reset_rx(void) { memset(&rx, 0, sizeof(rx)); } bool MDC1200_process_rx_data( const void *buffer, const unsigned int size, //const bool inverted, uint8_t *op, uint8_t *arg, uint16_t *unit_id) { const uint8_t *buffer8 = (const uint8_t *)buffer; unsigned int index; // 04 8D BF 66 58 sync // FB 72 40 99 A7 inverted sync // // 04 8D BF 66 58 40 C4 B0 32 BA F9 33 18 35 08 83 F6 0C 36 .. 80 87 20 23 2C AE 22 10 26 0F 02 A4 08 24 // 04 8D BF 66 58 45 DB 03 07 BC FA 35 2E 33 0E 83 0E 83 69 .. 86 92 02 05 28 AC 26 34 22 0B 02 0B 02 4E memset(&rx, 0, sizeof(rx)); for (index = 0; index < size; index++) { int bit; const uint8_t rx_byte = buffer8[index]; for (bit = 7; bit >= 0; bit--) { unsigned int i; rx.prev_bit = rx.bit; rx.bit = (rx_byte >> bit) & 1u; rx.xor_bit = (rx.xor_bit ^ rx.bit) & 1u; // toggle our bit if the rx bit is high rx.shift_reg = (rx.shift_reg << 1) | rx.xor_bit; rx.bit_count++; // ********* if (rx.stage == 0) { // looking for the 40-bit sync pattern const unsigned int sync_bit_ok_threshold = 32; if (rx.bit_count >= 40) { // 40-bit sync pattern uint64_t sync_nor = 0x07092a446fu; // normal uint64_t sync_inv = 0xffffffffffu ^ sync_nor; // bit inverted sync_nor ^= rx.shift_reg; sync_inv ^= rx.shift_reg; unsigned int nor_count = 0; unsigned int inv_count = 0; for (i = 40; i > 0; i--, sync_nor >>= 1, sync_inv >>= 1) { nor_count += sync_nor & 1u; inv_count += sync_inv & 1u; } nor_count = 40 - nor_count; inv_count = 40 - inv_count; #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) // UART_SendText("mdc1200 rx sync pat "); // for (i = 64; i > 0; i--) // UART_printf("%u", (uint8_t)((rx.shift_reg >> (i - 1))) & 1u); // UART_SendText("\r\n"); #endif if (nor_count >= sync_bit_ok_threshold || inv_count >= sync_bit_ok_threshold) { // good enough rx.inverted_sync = (inv_count > nor_count) ? true : false; rx.data_index = 0; rx.bit_count = 0; rx.stage = 1; #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) //UART_printf("mdc1200 rx sync %s\r\n", rx.inverted_sync ? "inv" : "nor"); #endif } } continue; } if (rx.bit_count < 8) continue; rx.bit_count = 0; rx.data[rx.data_index++] = rx.shift_reg & 0xff; // save the last 8 bits if (rx.data_index < (MDC1200_FEC_K * 2)) continue; #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("mdc1200 dec "); for (i = 0; i < rx.data_index; i++) UART_printf(" %02X", rx.data[i]); UART_SendText("\r\n"); #endif if (!decode_data(rx.data)) { MDC1200_reset_rx(); #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("mdc1200 dec err\r\n"); #endif continue; } // extract the info from the packet *op = rx.data[0]; *arg = rx.data[1]; *unit_id = ((uint16_t)rx.data[2] << 8) | (rx.data[3] << 0); #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) //UART_printf("mdc1200 op %02X arg %02X id %04X\r\n", *op, *arg, *unit_id); #endif // reset the detector MDC1200_reset_rx(); return true; } } MDC1200_reset_rx(); return false; } uint8_t mdc1200_rx_buffer[sizeof(mdc1200_sync_suc_xor) + (MDC1200_FEC_K * 2)]; unsigned int mdc1200_rx_buffer_index = 0; uint8_t mdc1200_op; uint8_t mdc1200_arg; uint16_t mdc1200_unit_id; uint8_t mdc1200_rx_ready_tick_500ms; void MDC1200_process_rx(const uint16_t interrupt_bits) { const uint16_t rx_sync_flags = BK4819_read_reg(0x0B); const uint16_t fsk_reg59 = BK4819_read_reg(0x59) & ~((1u << 15) | (1u << 14) | (1u << 12) | (1u << 11)); const bool rx_sync = (interrupt_bits & BK4819_REG_02_FSK_RX_SYNC) ? true : false; const bool rx_sync_neg = (rx_sync_flags & (1u << 7)) ? true : false; const bool rx_sync_pos = (rx_sync_flags & (1u << 6)) ? true : false; const bool rx_fifo_almost_full = (interrupt_bits & BK4819_REG_02_FSK_FIFO_ALMOST_FULL) ? true : false; const bool rx_finished = (interrupt_bits & BK4819_REG_02_FSK_RX_FINISHED) ? true : false; // const unsigned int sync_size = (fsk_reg59 & (1u << 3)) ? 4 : 2; if (rx_sync) { // BK4819_set_GPIO_pin(BK4819_GPIO6_PIN2_GREEN, true); // LED on mdc1200_rx_buffer_index = 0; { // precede the data with the missing sync pattern (it's not part of the packet data) unsigned int i; memset(mdc1200_rx_buffer, 0, sizeof(mdc1200_rx_buffer)); // for (i = 0; i < sync_size; i++) for (i = 0; i < sizeof(mdc1200_sync_suc_xor); i++) mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = mdc1200_sync_suc_xor[i] ^ (rx_sync_neg ? 0xFF : 0x00); } #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("mdc1200 syn"); #endif if (rx_sync_neg) { // RX sync neg found #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("-"); #endif } if (rx_sync_pos) { // RX sync pos found #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("+"); #endif } #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("\r\n"); #endif } if (rx_fifo_almost_full) { unsigned int i; const unsigned int count = BK4819_read_reg(0x5E) & (7u << 0); // almost full threshold #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) const unsigned int packet_size = 1 + (BK4819_read_reg(0x5D) >> 8); UART_printf("mdc1200 full %2u %2u %2u ", mdc1200_rx_buffer_index, count, packet_size); #endif // fetch received packet data for (i = 0; i < count; i++) { const uint16_t word = BK4819_read_reg(0x5F) ^ (rx_sync_neg ? 0xFFFF : 0x0000); #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_printf(" %04X", word); #endif if (mdc1200_rx_buffer_index < sizeof(mdc1200_rx_buffer)) mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = (word >> 0) & 0xff; if (mdc1200_rx_buffer_index < sizeof(mdc1200_rx_buffer)) mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = (word >> 8) & 0xff; } #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("\r\n"); #endif if (mdc1200_rx_buffer_index >= sizeof(mdc1200_rx_buffer)) { BK4819_write_reg(0x59, (1u << 15) | (1u << 14) | fsk_reg59); BK4819_write_reg(0x59, (1u << 12) | fsk_reg59); #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) { unsigned int i; UART_SendText("mdc1200 "); for (i = 0; i < mdc1200_rx_buffer_index; i++) UART_printf(" %02X", mdc1200_rx_buffer[i]); UART_SendText("\r\n"); } #endif // if (!g_squelch_open) // BK4819_set_GPIO_pin(BK4819_GPIO6_PIN2_GREEN, false); // LED off if (MDC1200_process_rx_data( mdc1200_rx_buffer, mdc1200_rx_buffer_index, // (sync_flags & (1u << 7)) ? true : false, // true if the sync pattern is bit inverted &mdc1200_op, &mdc1200_arg, &mdc1200_unit_id)) { mdc1200_rx_ready_tick_500ms = 2 * 6; // 6 second MDC display time g_update_display = true; #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_printf("MDC1200 op %02X arg %02X id %04X\r\n", mdc1200_op, mdc1200_arg, mdc1200_unit_id); #endif } mdc1200_rx_buffer_index = 0; } } if (rx_finished) { mdc1200_rx_buffer_index = 0; // if (!g_squelch_open) // BK4819_set_GPIO_pin(BK4819_GPIO6_PIN2_GREEN, false); // LED off BK4819_write_reg(0x59, (1u << 15) | (1u << 14) | fsk_reg59); BK4819_write_reg(0x59, (1u << 12) | fsk_reg59); #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) UART_SendText("mdc1200 fin\r\n"); #endif } } // ********************************************************** /* void test(void) { uint8_t data[42]; const int size = MDC1200_encode_single_packet(data, 0x12, 0x34, 0x5678); // const int size = MDC1200_encode_double_packet(data, 0x55, 0x34, 0x5678, 0x0a, 0x0b, 0x0c, 0x0d); } */ void MDC1200_init(void) { memcpy(mdc1200_sync_suc_xor, mdc1200_sync, sizeof(mdc1200_sync)); xor_modulation(mdc1200_sync_suc_xor, sizeof(mdc1200_sync_suc_xor)); MDC1200_reset_rx(); }