/* Copyright 2023 Dual Tachyon * https://github.com/DualTachyon * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "app/app.h" #include "app/dtmf.h" #ifdef ENABLE_FMRADIO #include "app/fm.h" #endif #ifdef ENABLE_AM_FIX #include "am_fix.h" #endif #include "audio.h" #include "board.h" #include "bsp/dp32g030/gpio.h" #include "dcs.h" #include "driver/bk4819.h" #include "driver/eeprom.h" #include "driver/gpio.h" #include "driver/system.h" #include "frequencies.h" #include "functions.h" #include "helper/battery.h" #ifdef ENABLE_MDC1200 #include "mdc1200.h" #endif #include "misc.h" #include "radio.h" #include "settings.h" #include "ui/menu.h" #include "ui/ui.h" vfo_info_t *g_tx_vfo; vfo_info_t *g_rx_vfo; vfo_info_t *g_current_vfo; dcs_code_type_t g_selected_code_type; dcs_code_type_t g_current_code_type; uint8_t g_selected_code; vfo_state_t g_vfo_state[2]; bool RADIO_CheckValidChannel(uint16_t Channel, bool bCheckScanList, uint8_t VFO) { // return true if the channel appears valid uint8_t Attributes; uint8_t PriorityCh1; uint8_t PriorityCh2; if (Channel > USER_CHANNEL_LAST) return false; Attributes = g_user_channel_attributes[Channel]; if ((Attributes & USER_CH_BAND_MASK) > BAND7_470MHz) return false; if (bCheckScanList) { switch (VFO) { case 0: if ((Attributes & USER_CH_SCANLIST1) == 0) return false; PriorityCh1 = g_eeprom.scan_list_priority_ch1[0]; PriorityCh2 = g_eeprom.scan_list_priority_ch2[0]; break; case 1: if ((Attributes & USER_CH_SCANLIST2) == 0) return false; PriorityCh1 = g_eeprom.scan_list_priority_ch1[1]; PriorityCh2 = g_eeprom.scan_list_priority_ch2[1]; break; default: return true; } if (PriorityCh1 == Channel) return false; if (PriorityCh2 == Channel) return false; } return true; } uint8_t RADIO_FindNextChannel(uint8_t Channel, scan_state_dir_t Direction, bool bCheckScanList, uint8_t VFO) { unsigned int i; for (i = 0; i <= USER_CHANNEL_LAST; i++) { if (Channel == 0xFF) Channel = USER_CHANNEL_LAST; else if (Channel > USER_CHANNEL_LAST) Channel = USER_CHANNEL_FIRST; if (RADIO_CheckValidChannel(Channel, bCheckScanList, VFO)) return Channel; Channel += Direction; } return 0xFF; } void RADIO_InitInfo(vfo_info_t *p_vfo, const uint8_t ChannelSave, const uint32_t Frequency) { if (p_vfo == NULL) return; memset(p_vfo, 0, sizeof(*p_vfo)); p_vfo->band = FREQUENCY_GetBand(Frequency); p_vfo->scanlist_1_participation = 1; p_vfo->scanlist_2_participation = 1; p_vfo->step_setting = STEP_12_5kHz; p_vfo->step_freq = STEP_FREQ_TABLE[p_vfo->step_setting]; p_vfo->channel_save = ChannelSave; p_vfo->frequency_reverse = false; p_vfo->output_power = OUTPUT_POWER_LOW; p_vfo->freq_config_rx.frequency = Frequency; p_vfo->freq_config_tx.frequency = Frequency; p_vfo->p_rx = &p_vfo->freq_config_rx; p_vfo->p_tx = &p_vfo->freq_config_tx; p_vfo->compand = 0; // off p_vfo->squelch_level = 0; // use main squelch p_vfo->freq_in_channel = 0xff; if (ChannelSave == (FREQ_CHANNEL_FIRST + BAND2_108MHz)) p_vfo->am_mode = 1; RADIO_ConfigureSquelchAndOutputPower(p_vfo); } void RADIO_configure_channel(const unsigned int VFO, const unsigned int configure) { uint8_t Channel; uint8_t Attributes; uint8_t Band; uint16_t Base; uint32_t Frequency; vfo_info_t *p_vfo = &g_eeprom.vfo_info[VFO]; if (!g_setting_350_enable) { if (g_eeprom.freq_channel[VFO] == (FREQ_CHANNEL_LAST - 2)) g_eeprom.freq_channel[VFO] = FREQ_CHANNEL_LAST - 1; if (g_eeprom.screen_channel[VFO] == (FREQ_CHANNEL_LAST - 2)) g_eeprom.screen_channel[VFO] = FREQ_CHANNEL_LAST - 1; } Channel = g_eeprom.screen_channel[VFO]; p_vfo->freq_in_channel = 0xff; if (IS_VALID_CHANNEL(Channel)) { #ifdef ENABLE_NOAA if (Channel >= NOAA_CHANNEL_FIRST) { RADIO_InitInfo(p_vfo, g_eeprom.screen_channel[VFO], NOAA_FREQUENCY_TABLE[Channel - NOAA_CHANNEL_FIRST]); if (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) return; g_eeprom.cross_vfo_rx_tx = CROSS_BAND_OFF; g_update_status = true; return; } #endif if (Channel <= USER_CHANNEL_LAST) { Channel = RADIO_FindNextChannel(Channel, SCAN_STATE_DIR_FORWARD, false, VFO); if (Channel == 0xFF) { Channel = g_eeprom.freq_channel[VFO]; g_eeprom.screen_channel[VFO] = g_eeprom.freq_channel[VFO]; } else { g_eeprom.screen_channel[VFO] = Channel; g_eeprom.user_channel[VFO] = Channel; } } } else Channel = FREQ_CHANNEL_LAST - 1; Attributes = g_user_channel_attributes[Channel]; if (Attributes == 0xFF) { // invalid/unused channel uint8_t Index; if (Channel <= USER_CHANNEL_LAST) { Channel = g_eeprom.freq_channel[VFO]; g_eeprom.screen_channel[VFO] = g_eeprom.freq_channel[VFO]; } Index = Channel - FREQ_CHANNEL_FIRST; RADIO_InitInfo(p_vfo, Channel, FREQ_BAND_TABLE[Index].lower); return; } Band = Attributes & USER_CH_BAND_MASK; if (Band > BAND7_470MHz) Band = BAND6_400MHz; if (Channel <= USER_CHANNEL_LAST) { // USER channel p_vfo->band = Band; p_vfo->scanlist_2_participation = (Attributes & USER_CH_SCANLIST2) ? 1 : 0; p_vfo->scanlist_1_participation = (Attributes & USER_CH_SCANLIST1) ? 1 : 0; } else if (IS_FREQ_CHANNEL(Channel)) { // VFO channel Band = Channel - FREQ_CHANNEL_FIRST; g_eeprom.vfo_info[VFO].band = Band; // shouldn't this be "Band / 2" ? .. two VFO's per band #if 0 p_vfo->scanlist_2_participation = 1; p_vfo->scanlist_1_participation = 1; #else // allowing the vfo's to be included in the scanning p_vfo->scanlist_2_participation = (Attributes & USER_CH_SCANLIST2) ? 1 : 0; p_vfo->scanlist_1_participation = (Attributes & USER_CH_SCANLIST1) ? 1 : 0; #endif } p_vfo->channel_save = Channel; if (Channel <= USER_CHANNEL_LAST) Base = Channel * 16; else Base = 0x0C80 + ((Channel - FREQ_CHANNEL_FIRST) * 16 * 2) + (VFO * 16); // VFO channel if (configure == VFO_CONFIGURE_RELOAD || IS_FREQ_CHANNEL(Channel)) { t_channel m_channel; EEPROM_ReadBuffer(Base, &m_channel, sizeof(m_channel)); p_vfo->freq_config_rx.frequency = m_channel.frequency; p_vfo->tx_offset_freq = (m_channel.tx_offset < MAX_TX_OFFSET) ? m_channel.tx_offset : 0; p_vfo->tx_offset_freq_dir = (m_channel.tx_offset_dir < TX_OFFSET_FREQ_DIR_LAST) ? m_channel.tx_offset_dir : TX_OFFSET_FREQ_DIR_OFF; p_vfo->am_mode = m_channel.am_mode; p_vfo->step_setting = (m_channel.step_setting < ARRAY_SIZE(STEP_FREQ_TABLE)) ? m_channel.step_setting : STEP_12_5kHz; p_vfo->step_freq = STEP_FREQ_TABLE[p_vfo->step_setting]; p_vfo->scrambling_type = (m_channel.scrambler < ARRAY_SIZE(g_sub_menu_scrambler)) ? m_channel.scrambler : 0; p_vfo->freq_config_rx.code_type = m_channel.rx_ctcss_cdcss_type; switch (m_channel.rx_ctcss_cdcss_type) { default: case CODE_TYPE_NONE: p_vfo->freq_config_rx.code_type = CODE_TYPE_NONE; p_vfo->freq_config_rx.code = 0; break; case CODE_TYPE_CONTINUOUS_TONE: p_vfo->freq_config_rx.code = (m_channel.rx_ctcss_cdcss_code < ARRAY_SIZE(CTCSS_OPTIONS)) ? m_channel.rx_ctcss_cdcss_code : 0; break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: p_vfo->freq_config_rx.code = (m_channel.rx_ctcss_cdcss_code < ARRAY_SIZE(DCS_OPTIONS)) ? m_channel.rx_ctcss_cdcss_code : 0; break; } p_vfo->freq_config_tx.code_type = m_channel.tx_ctcss_cdcss_type; switch (m_channel.tx_ctcss_cdcss_type) { default: case CODE_TYPE_NONE: p_vfo->freq_config_tx.code_type = CODE_TYPE_NONE; p_vfo->freq_config_tx.code = 0; break; case CODE_TYPE_CONTINUOUS_TONE: p_vfo->freq_config_tx.code = (m_channel.tx_ctcss_cdcss_code < ARRAY_SIZE(CTCSS_OPTIONS)) ? m_channel.tx_ctcss_cdcss_code : 0; break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: p_vfo->freq_config_tx.code = (m_channel.tx_ctcss_cdcss_code < ARRAY_SIZE(DCS_OPTIONS)) ? m_channel.tx_ctcss_cdcss_code : 0; break; } #ifdef ENABLE_MDC1200 p_vfo->mdc1200_mode = m_channel.mdc1200_mode; #endif p_vfo->frequency_reverse = m_channel.frequency_reverse ? true : false; p_vfo->channel_bandwidth = m_channel.channel_bandwidth ? true : false; p_vfo->output_power = m_channel.tx_power; p_vfo->busy_channel_lock = m_channel.busy_channel_lock ? true : false; p_vfo->compand = m_channel.compand; p_vfo->dtmf_decoding_enable = m_channel.dtmf_decoding_enable ? true : false; p_vfo->dtmf_ptt_id_tx_mode = m_channel.dtmf_ptt_id_tx_mode; p_vfo->squelch_level = (m_channel.squelch_level < 10) ? m_channel.squelch_level : 0; } Frequency = p_vfo->freq_config_rx.frequency; if (Frequency < FREQ_BAND_TABLE[Band].lower) Frequency = FREQ_BAND_TABLE[Band].lower; else if (Frequency >= FREQ_BAND_TABLE[Band].upper) Frequency = FREQUENCY_floor_to_step(Frequency, p_vfo->step_freq, FREQ_BAND_TABLE[Band].lower, FREQ_BAND_TABLE[Band].upper); else if (Channel >= FREQ_CHANNEL_FIRST) Frequency = FREQUENCY_floor_to_step(Frequency, p_vfo->step_freq, FREQ_BAND_TABLE[Band].lower, FREQ_BAND_TABLE[Band].upper); if (!g_setting_350_enable && Frequency >= 35000000 && Frequency < 40000000) { // 350~400Mhz not allowed // hop onto the next band up Frequency = 43350000; p_vfo->freq_config_rx.frequency = Frequency; p_vfo->freq_config_tx.frequency = Frequency; Band = FREQUENCY_GetBand(Frequency); p_vfo->band = Band; p_vfo->frequency_reverse = 0; p_vfo->tx_offset_freq_dir = TX_OFFSET_FREQ_DIR_OFF; p_vfo->tx_offset_freq = 0; // TODO: also update other settings such as step size } p_vfo->freq_config_rx.frequency = Frequency; if (Frequency >= AIR_BAND.lower && Frequency < AIR_BAND.upper) { // air band p_vfo->tx_offset_freq_dir = TX_OFFSET_FREQ_DIR_OFF; p_vfo->tx_offset_freq = 0; } else if (Channel > USER_CHANNEL_LAST) { p_vfo->tx_offset_freq = FREQUENCY_floor_to_step(p_vfo->tx_offset_freq + (p_vfo->step_freq / 2), p_vfo->step_freq, 0, p_vfo->tx_offset_freq + p_vfo->step_freq); } RADIO_ApplyOffset(p_vfo, true); // channel name memset(p_vfo->name, 0, sizeof(p_vfo->name)); if (Channel <= USER_CHANNEL_LAST) EEPROM_ReadBuffer(0x0F50 + (Channel * 16), p_vfo->name, 10); // only 10 bytes used if (p_vfo->am_mode > 0) { // freq/chan is in AM mode // disable stuff, even though it can all still be used with AM ??? p_vfo->scrambling_type = 0; // p_vfo->dtmf_decoding_enable = false; p_vfo->freq_config_rx.code_type = CODE_TYPE_NONE; p_vfo->freq_config_tx.code_type = CODE_TYPE_NONE; } RADIO_ConfigureSquelchAndOutputPower(p_vfo); #ifdef ENABLE_AM_FIX if (p_vfo->am_mode > 0 && g_setting_am_fix) { AM_fix_reset(VFO); AM_fix_10ms(VFO); } else { // don't do agc in FM mode BK4819_DisableAGC(); BK4819_WriteRegister(0x13, (orig_lnas << 8) | (orig_lna << 5) | (orig_mixer << 3) | (orig_pga << 0)); } #else if (p_vfo->am_mode > 0) { BK4819_EnableAGC(); } else { // don't do agc in FM mode BK4819_DisableAGC(); BK4819_WriteRegister(0x13, (orig_lnas << 8) | (orig_lna << 5) | (orig_mixer << 3) | (orig_pga << 0)); } #endif // if (configure == VFO_CONFIGURE_RELOAD || IS_FREQ_CHANNEL(Channel)) if (IS_FREQ_CHANNEL(Channel)) p_vfo->freq_in_channel = BOARD_find_channel(Frequency); // find channel that has this frequency } void RADIO_ConfigureSquelchAndOutputPower(vfo_info_t *p_vfo) { uint8_t TX_power[3]; uint16_t Base; frequency_band_t Band; uint8_t squelch_level; // ******************************* // squelch Band = FREQUENCY_GetBand(p_vfo->p_rx->frequency); Base = (Band < BAND4_174MHz) ? 0x1E60 : 0x1E00; squelch_level = (p_vfo->squelch_level > 0) ? p_vfo->squelch_level : g_eeprom.squelch_level; // note that 'noise' and 'glitch' values are inverted compared to 'rssi' values if (squelch_level == 0) { // squelch == 0 (off) p_vfo->squelch_open_rssi_thresh = 0; // 0 ~ 255 p_vfo->squelch_close_rssi_thresh = 0; // 0 ~ 255 p_vfo->squelch_open_noise_thresh = 127; // 127 ~ 0 p_vfo->squelch_close_noise_thresh = 127; // 127 ~ 0 p_vfo->squelch_close_glitch_thresh = 255; // 255 ~ 0 p_vfo->squelch_open_glitch_thresh = 255; // 255 ~ 0 } else { // squelch >= 1 Base += squelch_level; // my eeprom squelch-1 // VHF UHF EEPROM_ReadBuffer(Base + 0x00, &p_vfo->squelch_open_rssi_thresh, 1); // 50 10 EEPROM_ReadBuffer(Base + 0x10, &p_vfo->squelch_close_rssi_thresh, 1); // 40 5 EEPROM_ReadBuffer(Base + 0x20, &p_vfo->squelch_open_noise_thresh, 1); // 65 90 EEPROM_ReadBuffer(Base + 0x30, &p_vfo->squelch_close_noise_thresh, 1); // 70 100 EEPROM_ReadBuffer(Base + 0x40, &p_vfo->squelch_close_glitch_thresh, 1); // 90 90 EEPROM_ReadBuffer(Base + 0x50, &p_vfo->squelch_open_glitch_thresh, 1); // 100 100 // ********* // used in AM mode int16_t rssi_open = p_vfo->squelch_open_rssi_thresh; // 0 ~ 255 int16_t rssi_close = p_vfo->squelch_close_rssi_thresh; // 0 ~ 255 // used in FM mode int16_t noise_open = p_vfo->squelch_open_noise_thresh; // 127 ~ 0 int16_t noise_close = p_vfo->squelch_close_noise_thresh; // 127 ~ 0 // used in both modes ? int16_t glitch_open = p_vfo->squelch_open_glitch_thresh; // 255 ~ 0 int16_t glitch_close = p_vfo->squelch_close_glitch_thresh; // 255 ~ 0 // ********* #if ENABLE_SQUELCH_MORE_SENSITIVE // make squelch a little more sensitive // // getting the best general settings here is experimental, bare with me #if 0 // rssi_open = (rssi_open * 8) / 9; noise_open = (noise_open * 9) / 8; glitch_open = (glitch_open * 9) / 8; #else // even more sensitive .. use when RX bandwidths are fixed (no weak signal auto adjust) // rssi_open = (rssi_open * 1) / 2; noise_open = (noise_open * 2) / 1; glitch_open = (glitch_open * 2) / 1; #endif #else // more sensitive .. use when RX bandwidths are fixed (no weak signal auto adjust) // rssi_open = (rssi_open * 3) / 4; noise_open = (noise_open * 4) / 3; glitch_open = (glitch_open * 4) / 3; #endif // ********* // ensure the 'close' threshold is lower than the 'open' threshold // ie, maintain a minimum level of hysteresis // rssi_close = (rssi_open * 4) / 6; noise_close = (noise_open * 6) / 4; glitch_close = (glitch_open * 6) / 4; // if (rssi_open < 8) // rssi_open = 8; // if (rssi_close > (rssi_open - 8)) // rssi_close = rssi_open - 8; if (noise_open > (127 - 4)) noise_open = 127 - 4; if (noise_close < (noise_open + 4)) noise_close = noise_open + 4; if (glitch_open > (255 - 8)) glitch_open = 255 - 8; if (glitch_close < (glitch_open + 8)) glitch_close = glitch_open + 8; // ********* p_vfo->squelch_open_rssi_thresh = (rssi_open > 255) ? 255 : (rssi_open < 0) ? 0 : rssi_open; p_vfo->squelch_close_rssi_thresh = (rssi_close > 255) ? 255 : (rssi_close < 0) ? 0 : rssi_close; p_vfo->squelch_open_noise_thresh = (noise_open > 127) ? 127 : (noise_open < 0) ? 0 : noise_open; p_vfo->squelch_close_noise_thresh = (noise_close > 127) ? 127 : (noise_close < 0) ? 0 : noise_close; p_vfo->squelch_open_glitch_thresh = (glitch_open > 255) ? 255 : (glitch_open < 0) ? 0 : glitch_open; p_vfo->squelch_close_glitch_thresh = (glitch_close > 255) ? 255 : (glitch_close < 0) ? 0 : glitch_close; } // ******************************* // output power // my calibration data // // 1ED0 32 32 32 64 64 64 8C 8C 8C FF FF FF FF FF FF FF .. 50 MHz // 1EE0 32 32 32 64 64 64 8C 8C 8C FF FF FF FF FF FF FF .. 108 MHz // 1EF0 5F 5F 5F 69 69 69 91 91 8F FF FF FF FF FF FF FF .. 137 MHz // 1F00 32 32 32 64 64 64 8C 8C 8C FF FF FF FF FF FF FF .. 174 MHz // 1F10 5A 5A 5A 64 64 64 82 82 82 FF FF FF FF FF FF FF .. 350 MHz // 1F20 5A 5A 5A 64 64 64 8F 91 8A FF FF FF FF FF FF FF .. 400 MHz // 1F30 32 32 32 64 64 64 8C 8C 8C FF FF FF FF FF FF FF .. 470 MHz Band = FREQUENCY_GetBand(p_vfo->p_tx->frequency); EEPROM_ReadBuffer(0x1ED0 + (Band * 16) + (p_vfo->output_power * 3), TX_power, 3); #ifdef ENABLE_REDUCE_LOW_MID_TX_POWER // make low and mid even lower if (p_vfo->output_power == OUTPUT_POWER_LOW) { TX_power[0] /= 5; //TX_power[0] /= 8; TX_power[1] /= 5; //TX_power[1] /= 8; TX_power[2] /= 5; //TX_power[2] /= 8; get more low power } else if (p_vfo->output_power == OUTPUT_POWER_MID) { TX_power[0] /= 3; //TX_power[0] /= 5; TX_power[1] /= 3; //TX_power[1] /= 5; TX_power[2] /= 3; //TX_power[2] /= 5; get more low power } #endif p_vfo->txp_calculated_setting = FREQUENCY_CalculateOutputPower( TX_power[0], TX_power[1], TX_power[2], FREQ_BAND_TABLE[Band].lower, (FREQ_BAND_TABLE[Band].lower + FREQ_BAND_TABLE[Band].upper) / 2, FREQ_BAND_TABLE[Band].upper, p_vfo->p_tx->frequency); // ******************************* } void RADIO_ApplyOffset(vfo_info_t *p_vfo, const bool set_pees) { uint32_t Frequency = p_vfo->freq_config_rx.frequency; switch (p_vfo->tx_offset_freq_dir) { case TX_OFFSET_FREQ_DIR_OFF: break; case TX_OFFSET_FREQ_DIR_ADD: Frequency += p_vfo->tx_offset_freq; break; case TX_OFFSET_FREQ_DIR_SUB: Frequency -= p_vfo->tx_offset_freq; break; } if (Frequency < FREQ_BAND_TABLE[0].lower) Frequency = FREQ_BAND_TABLE[0].lower; else if (Frequency > FREQ_BAND_TABLE[ARRAY_SIZE(FREQ_BAND_TABLE) - 1].upper) Frequency = FREQ_BAND_TABLE[ARRAY_SIZE(FREQ_BAND_TABLE) - 1].upper; p_vfo->freq_config_tx.frequency = Frequency; if (set_pees) { if (!p_vfo->frequency_reverse) { p_vfo->p_rx = &p_vfo->freq_config_rx; p_vfo->p_tx = &p_vfo->freq_config_tx; } else { p_vfo->p_rx = &p_vfo->freq_config_tx; p_vfo->p_tx = &p_vfo->freq_config_rx; } } } static void RADIO_SelectCurrentVfo(void) { g_current_vfo = (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? g_rx_vfo : &g_eeprom.vfo_info[g_eeprom.tx_vfo]; } void RADIO_select_vfos(void) { g_eeprom.tx_vfo = get_TX_VFO(); g_eeprom.rx_vfo = (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? g_eeprom.tx_vfo : (g_eeprom.tx_vfo + 1) & 1u; g_tx_vfo = &g_eeprom.vfo_info[g_eeprom.tx_vfo]; g_rx_vfo = &g_eeprom.vfo_info[g_eeprom.rx_vfo]; RADIO_SelectCurrentVfo(); } void RADIO_setup_registers(bool switch_to_function_foreground) { BK4819_filter_bandwidth_t Bandwidth = g_rx_vfo->channel_bandwidth; uint16_t interrupt_mask; uint32_t Frequency; if (!g_monitor_enabled) GPIO_ClearBit(&GPIOC->DATA, GPIOC_PIN_SPEAKER); // turn green LED off BK4819_set_GPIO_pin(BK4819_GPIO6_PIN2_GREEN, false); switch (Bandwidth) { default: Bandwidth = BK4819_FILTER_BW_WIDE; // Fallthrough case BK4819_FILTER_BW_WIDE: case BK4819_FILTER_BW_NARROW: #ifdef ENABLE_AM_FIX #if 0 // BK4819_SetFilterBandwidth(Bandwidth, g_rx_vfo->am_mode > 0 && g_setting_am_fix); BK4819_SetFilterBandwidth(Bandwidth, true); #else if (g_rx_vfo->am_mode > 1) BK4819_SetFilterBandwidth(BK4819_FILTER_BW_NARROWER, false); else BK4819_SetFilterBandwidth(Bandwidth, true); #endif #else BK4819_SetFilterBandwidth(Bandwidth, false); #endif break; } BK4819_WriteRegister(0x30, 0); BK4819_WriteRegister(0x30, BK4819_REG_30_ENABLE_VCO_CALIB | // BK4819_REG_30_ENABLE_UNKNOWN | BK4819_REG_30_ENABLE_RX_LINK | BK4819_REG_30_ENABLE_AF_DAC | BK4819_REG_30_ENABLE_DISC_MODE | BK4819_REG_30_ENABLE_PLL_VCO | // BK4819_REG_30_ENABLE_PA_GAIN | // BK4819_REG_30_ENABLE_MIC_ADC | // BK4819_REG_30_ENABLE_TX_DSP | BK4819_REG_30_ENABLE_RX_DSP | 0); BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1_RED, false); // LED off BK4819_SetupPowerAmplifier(0, 0); BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_PA_ENABLE, false); // PA off while (1) { // wait for interrupts to clear const uint16_t int_bits = BK4819_ReadRegister(0x0C); if ((int_bits & (1u << 0)) == 0) break; BK4819_WriteRegister(0x02, 0); // clear the interrupt bits SYSTEM_DelayMs(1); } BK4819_WriteRegister(0x3F, 0); // disable interrupts #ifdef ENABLE_NOAA if (IS_NOAA_CHANNEL(g_rx_vfo->channel_save) && g_is_noaa_mode) Frequency = NOAA_FREQUENCY_TABLE[g_noaa_channel]; else #endif Frequency = g_rx_vfo->p_rx->frequency; BK4819_set_rf_frequency(Frequency, false); BK4819_set_rf_filter_path(Frequency); BK4819_SetupSquelch( g_rx_vfo->squelch_open_rssi_thresh, g_rx_vfo->squelch_close_rssi_thresh, g_rx_vfo->squelch_open_noise_thresh, g_rx_vfo->squelch_close_noise_thresh, g_rx_vfo->squelch_close_glitch_thresh, g_rx_vfo->squelch_open_glitch_thresh); // enable the RX front end BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_RX_ENABLE, true); // AF RX Gain and DAC // if (g_rx_vfo->am_mode > 0) // { // BK4819_WriteRegister(0x48, 0xB3A8); // 1011 0011 1010 1000 // } // else { BK4819_WriteRegister(0x48, (11u << 12) | // ??? .. 0 ~ 15, doesn't seem to make any difference ( 0u << 10) | // AF Rx Gain-1 (g_eeprom.volume_gain << 4) | // AF Rx Gain-2 (g_eeprom.dac_gain << 0)); // AF DAC Gain (after Gain-1 and Gain-2) } #ifdef ENABLE_VOICE #ifdef MUTE_AUDIO_FOR_VOICE if (g_voice_write_index == 0) AUDIO_set_mod_mode(g_rx_vfo->am_mode); #else AUDIO_set_mod_mode(g_rx_vfo->am_mode); #endif #else AUDIO_set_mod_mode(g_rx_vfo->am_mode); #endif interrupt_mask = BK4819_REG_3F_SQUELCH_FOUND | BK4819_REG_3F_SQUELCH_LOST; if (IS_NOT_NOAA_CHANNEL(g_rx_vfo->channel_save)) { if (g_rx_vfo->am_mode == 0) { // FM uint8_t code_type = g_selected_code_type; uint8_t Code = g_selected_code; if (g_css_scan_mode == CSS_SCAN_MODE_OFF) { code_type = g_rx_vfo->p_rx->code_type; Code = g_rx_vfo->p_rx->code; } switch (code_type) { default: case CODE_TYPE_NONE: BK4819_SetCTCSSFrequency(670); //#ifndef ENABLE_CTCSS_TAIL_PHASE_SHIFT BK4819_SetTailDetection(550); // QS's 55Hz tone method //#else // BK4819_SetTailDetection(670); // 67Hz //#endif interrupt_mask |= BK4819_REG_3F_CxCSS_TAIL; break; case CODE_TYPE_CONTINUOUS_TONE: BK4819_SetCTCSSFrequency(CTCSS_OPTIONS[Code]); //#ifndef ENABLE_CTCSS_TAIL_PHASE_SHIFT BK4819_SetTailDetection(550); // QS's 55Hz tone method //#else // BK4819_SetTailDetection(CTCSS_OPTIONS[Code]); //#endif interrupt_mask |= BK4819_REG_3F_CxCSS_TAIL | BK4819_REG_3F_CTCSS_FOUND | BK4819_REG_3F_CTCSS_LOST; break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: BK4819_SetCDCSSCodeWord(DCS_GetGolayCodeWord(code_type, Code)); interrupt_mask |= BK4819_REG_3F_CxCSS_TAIL | BK4819_REG_3F_CDCSS_FOUND | BK4819_REG_3F_CDCSS_LOST; break; } if (g_rx_vfo->scrambling_type > 0 && g_setting_scramble_enable) BK4819_EnableScramble(g_rx_vfo->scrambling_type - 1); else BK4819_DisableScramble(); } } #ifdef ENABLE_NOAA else { BK4819_SetCTCSSFrequency(2625); interrupt_mask |= BK4819_REG_3F_CTCSS_FOUND | BK4819_REG_3F_CTCSS_LOST; } #endif #ifdef ENABLE_VOX if ( #ifdef ENABLE_FMRADIO !g_fm_radio_mode && #endif g_eeprom.vox_switch && IS_NOT_NOAA_CHANNEL(g_current_vfo->channel_save) && g_current_vfo->am_mode == 0) { BK4819_EnableVox(g_eeprom.vox1_threshold, g_eeprom.vox0_threshold); interrupt_mask |= BK4819_REG_3F_VOX_FOUND | BK4819_REG_3F_VOX_LOST; } else #endif BK4819_DisableVox(); // RX expander BK4819_SetCompander((g_rx_vfo->am_mode == 0 && g_rx_vfo->compand >= 2) ? g_rx_vfo->compand : 0); BK4819_EnableDTMF(); interrupt_mask |= BK4819_REG_3F_DTMF_5TONE_FOUND; #ifdef ENABLE_MDC1200 BK4819_enable_mdc1200_rx(true); interrupt_mask |= BK4819_REG_3F_FSK_RX_SYNC | BK4819_REG_3F_FSK_RX_FINISHED | BK4819_REG_3F_FSK_FIFO_ALMOST_FULL; #endif // enable BK4819 interrupts BK4819_WriteRegister(0x3F, interrupt_mask); FUNCTION_Init(); if (switch_to_function_foreground) FUNCTION_Select(FUNCTION_FOREGROUND); // if (g_monitor_enabled) // GPIO_SetBit(&GPIOC->DATA, GPIOC_PIN_SPEAKER); } #ifdef ENABLE_NOAA void RADIO_ConfigureNOAA(void) { uint8_t ChanAB; g_update_status = true; if (g_eeprom.noaa_auto_scan) { if (g_eeprom.dual_watch != DUAL_WATCH_OFF) { if (IS_NOT_NOAA_CHANNEL(g_eeprom.screen_channel[0])) { if (IS_NOT_NOAA_CHANNEL(g_eeprom.screen_channel[1])) { g_is_noaa_mode = false; return; } ChanAB = 1; } else ChanAB = 0; if (!g_is_noaa_mode) g_noaa_channel = g_eeprom.vfo_info[ChanAB].channel_save - NOAA_CHANNEL_FIRST; g_is_noaa_mode = true; return; } if (g_rx_vfo->channel_save >= NOAA_CHANNEL_FIRST) { g_is_noaa_mode = true; g_noaa_channel = g_rx_vfo->channel_save - NOAA_CHANNEL_FIRST; g_noaa_tick_10ms = noaa_tick_2_10ms; g_schedule_noaa = false; } else g_is_noaa_mode = false; } else g_is_noaa_mode = false; } #endif void RADIO_enableTX(const bool fsk_tx) { BK4819_filter_bandwidth_t Bandwidth = g_current_vfo->channel_bandwidth; GPIO_ClearBit(&GPIOC->DATA, GPIOC_PIN_SPEAKER); BK4819_set_GPIO_pin(BK4819_GPIO0_PIN28_RX_ENABLE, false); switch (Bandwidth) { default: Bandwidth = BK4819_FILTER_BW_WIDE; // Fallthrough case BK4819_FILTER_BW_WIDE: case BK4819_FILTER_BW_NARROW: #ifdef ENABLE_AM_FIX #if 0 // BK4819_SetFilterBandwidth(Bandwidth, g_current_vfo->am_mode > 0 && g_setting_am_fix); BK4819_SetFilterBandwidth(Bandwidth, true); #else if (g_current_vfo->am_mode > 1) BK4819_SetFilterBandwidth(BK4819_FILTER_BW_NARROWER, false); else BK4819_SetFilterBandwidth(Bandwidth, true); #endif #else BK4819_SetFilterBandwidth(Bandwidth, false); #endif break; } // if DTMF is enabled when TX'ing, it changes the TX audio filtering ! .. 1of11 // so MAKE SURE that DTMF is disabled - until needed BK4819_DisableDTMF(); BK4819_SetCompander((!fsk_tx && g_rx_vfo->am_mode == 0 && (g_rx_vfo->compand == 1 || g_rx_vfo->compand >= 3)) ? g_rx_vfo->compand : 0); BK4819_set_rf_frequency(g_current_vfo->p_tx->frequency, false); BK4819_set_rf_filter_path(g_current_vfo->p_tx->frequency); BK4819_PrepareTransmit(); BK4819_set_GPIO_pin(BK4819_GPIO1_PIN29_PA_ENABLE, true); // PA on if (g_current_display_screen != DISPLAY_AIRCOPY) BK4819_SetupPowerAmplifier(g_current_vfo->txp_calculated_setting, g_current_vfo->p_tx->frequency); else BK4819_SetupPowerAmplifier(0, g_current_vfo->p_tx->frequency); // very low power when in AIRCOPY mode BK4819_set_GPIO_pin(BK4819_GPIO5_PIN1_RED, true); // turn the RED LED on if (fsk_tx) { BK4819_ExitSubAu(); } else { switch (g_current_vfo->p_tx->code_type) { default: case CODE_TYPE_NONE: BK4819_ExitSubAu(); break; case CODE_TYPE_CONTINUOUS_TONE: BK4819_SetCTCSSFrequency(CTCSS_OPTIONS[g_current_vfo->p_tx->code]); break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: BK4819_SetCDCSSCodeWord(DCS_GetGolayCodeWord(g_current_vfo->p_tx->code_type, g_current_vfo->p_tx->code)); break; } } } void RADIO_set_vfo_state(vfo_state_t State) { if (State == VFO_STATE_NORMAL) { g_vfo_state[0] = VFO_STATE_NORMAL; g_vfo_state[1] = VFO_STATE_NORMAL; } else { if (State == VFO_STATE_VOLTAGE_HIGH) { g_vfo_state[0] = VFO_STATE_VOLTAGE_HIGH; g_vfo_state[1] = VFO_STATE_TX_DISABLE; } else { // 1of11 const unsigned int vfo = (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? g_eeprom.rx_vfo : g_eeprom.tx_vfo; g_vfo_state[vfo] = State; } // cause a display update to remove the message g_update_screen_tick_500ms = 8; // 4 seconds } g_update_display = true; } void RADIO_PrepareTX(void) { vfo_state_t State = VFO_STATE_NORMAL; // default to OK to TX if (g_eeprom.dual_watch != DUAL_WATCH_OFF) { // dual-RX is enabled #if 0 if (g_rx_vfo_is_active) { // use the TX vfo g_eeprom.rx_vfo = g_eeprom.tx_vfo; g_rx_vfo = &g_eeprom.vfo_info[g_eeprom.tx_vfo]; g_rx_vfo_is_active = false; } g_current_vfo = g_rx_vfo; #else if (!g_rx_vfo_is_active) { // use the current RX vfo g_eeprom.rx_vfo = g_eeprom.tx_vfo; g_rx_vfo = &g_eeprom.vfo_info[g_eeprom.tx_vfo]; g_rx_vfo_is_active = true; } g_current_vfo = g_rx_vfo; #endif g_update_status = true; } RADIO_SelectCurrentVfo(); #ifndef ENABLE_TX_WHEN_AM if (g_current_vfo->am_mode > 0) { // not allowed to TX if not in FM mode State = VFO_STATE_TX_DISABLE; } else #endif if (!g_setting_tx_enable || g_serial_config_tick_500ms > 0) { // TX is disabled or config upload/download in progress State = VFO_STATE_TX_DISABLE; } else if (FREQUENCY_tx_freq_check(g_current_vfo->p_tx->frequency) == 0) { // TX frequency is allowed if (g_current_vfo->busy_channel_lock && g_current_function == FUNCTION_RECEIVE) State = VFO_STATE_BUSY; // busy RX'ing a station else if (g_battery_display_level == 0) State = VFO_STATE_BAT_LOW; // charge your battery ! else if (g_battery_display_level >= 6) State = VFO_STATE_VOLTAGE_HIGH; // over voltage (no doubt to protect the PA) .. this is being a pain } else State = VFO_STATE_TX_DISABLE; // TX frequency not allowed if (State != VFO_STATE_NORMAL) { // TX not allowed RADIO_set_vfo_state(State); #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) g_alarm_state = ALARM_STATE_OFF; #endif g_dtmf_reply_state = DTMF_REPLY_NONE; AUDIO_PlayBeep(BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL); return; } // TX is allowed if (g_dtmf_reply_state == DTMF_REPLY_ANI) { if (g_dtmf_call_mode == DTMF_CALL_MODE_DTMF) { g_dtmf_is_tx = true; g_dtmf_call_state = DTMF_CALL_STATE_NONE; g_dtmf_tx_stop_tick_500ms = dtmf_txstop_500ms; } else { g_dtmf_call_state = DTMF_CALL_STATE_CALL_OUT; g_dtmf_is_tx = false; } } FUNCTION_Select(FUNCTION_TRANSMIT); g_tx_timer_tick_500ms = 0; // no timeout #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) if (g_alarm_state == ALARM_STATE_OFF) #endif { if (g_eeprom.tx_timeout_timer == 0) g_tx_timer_tick_500ms = 60; // 30 sec else if (g_eeprom.tx_timeout_timer < (ARRAY_SIZE(g_sub_menu_tx_timeout) - 1)) g_tx_timer_tick_500ms = 120 * g_eeprom.tx_timeout_timer; // minutes else g_tx_timer_tick_500ms = 120 * 15; // 15 minutes } g_tx_timeout_reached = false; g_flag_end_tx = false; g_rtte_count_down = 0; g_dtmf_reply_state = DTMF_REPLY_NONE; } void RADIO_EnableCxCSS(void) { switch (g_current_vfo->p_tx->code_type) { default: case CODE_TYPE_NONE: break; case CODE_TYPE_CONTINUOUS_TONE: BK4819_EnableCTCSS(); SYSTEM_DelayMs(200); break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: BK4819_EnableCDCSS(); SYSTEM_DelayMs(200); break; } } void RADIO_PrepareCssTX(void) { GPIO_ClearBit(&GPIOC->DATA, GPIOC_PIN_SPEAKER); RADIO_PrepareTX(); SYSTEM_DelayMs(200); RADIO_EnableCxCSS(); RADIO_setup_registers(true); } void RADIO_tx_eot(void) { #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) if (g_alarm_state != ALARM_STATE_OFF) { // don't send EOT if TX'ing tone/alarm BK4819_ExitDTMF_TX(true); return; } #endif if (g_dtmf_call_state == DTMF_CALL_STATE_NONE && (g_current_vfo->dtmf_ptt_id_tx_mode == PTT_ID_TX_DOWN || g_current_vfo->dtmf_ptt_id_tx_mode == PTT_ID_BOTH)) { // end-of-tx if (g_eeprom.dtmf_side_tone) { GPIO_SetBit(&GPIOC->DATA, GPIOC_PIN_SPEAKER); SYSTEM_DelayMs(60); } BK4819_EnterDTMF_TX(g_eeprom.dtmf_side_tone); BK4819_PlayDTMFString( g_eeprom.dtmf_key_down_code, 0, g_eeprom.dtmf_first_code_persist_time, g_eeprom.dtmf_hash_code_persist_time, g_eeprom.dtmf_code_persist_time, g_eeprom.dtmf_code_interval_time); GPIO_ClearBit(&GPIOC->DATA, GPIOC_PIN_SPEAKER); } else if (g_eeprom.roger_mode == ROGER_MODE_ROGER) { BK4819_PlayRoger(); } else #ifdef ENABLE_MDC1200 // if (g_eeprom.roger_mode == ROGER_MODE_MDC) if (g_current_vfo->mdc1200_mode == MDC1200_MODE_EOT || g_current_vfo->mdc1200_mode == MDC1200_MODE_BOTH) { BK4819_send_MDC1200(MDC1200_OP_CODE_POST_ID, 0x00, g_eeprom.mdc1200_id); } else #endif if (g_current_vfo->dtmf_ptt_id_tx_mode == PTT_ID_APOLLO) { BK4819_PlayTone(APOLLO_TONE2_HZ, APOLLO_TONE_MS, 28); } BK4819_ExitDTMF_TX(true); }