/* Copyright 2023 Dual Tachyon * https://github.com/DualTachyon * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wimplicit-fallthrough=" #pragma GCC diagnostic pop #include #include // abs() #include "app/dtmf.h" #ifdef ENABLE_AM_FIX_SHOW_DATA #include "am_fix.h" #endif #include "bitmaps.h" #include "board.h" #include "driver/backlight.h" #include "driver/bk4819.h" #include "driver/st7565.h" #include "external/printf/printf.h" #include "font.h" #include "functions.h" #include "helper/battery.h" #include "misc.h" #include "radio.h" #include "settings.h" #include "ui/helper.h" #include "ui/inputbox.h" #include "ui/main.h" #include "ui/menu.h" #include "ui/ui.h" center_line_t center_line = CENTER_LINE_NONE; // *************************************************************************** void draw_bar(uint8_t *line, const int len, const int max_width) { int i; #if 0 // solid bar for (i = 0; i < max_width; i++) line[i] = (i > len) ? ((i & 1) == 0) ? 0x41 : 0x00 : ((i & 1) == 0) ? 0x7f : 0x3e; #elif 0 // knuled bar for (i = 0; i < max_width; i += 2) line[i] = (i <= len) ? 0x7f : 0x41; #else // segmented bar for (i = 0; i < max_width; i += 4) { for (int k = i - 4; k < i && k < len; k++) { if (k >= 0) // line[k] = (k < (i - 1)) ? 0x7f : 0x00; if (k < (i - 1)) line[k] = 0x3e; } } // top/bottom lines for (i = 0; i < len; i += 2) line[i] |= 0x41; for (i &= ~3u ; i < max_width; i += 4) line[i] = 0x41; #endif } #ifdef ENABLE_TX_TIMEOUT_BAR bool UI_DisplayTXCountdown(const bool now) { unsigned int timeout_secs = 0; if (g_current_function != FUNCTION_TRANSMIT || g_screen_to_display != DISPLAY_MAIN) return false; if (center_line != CENTER_LINE_NONE && center_line != CENTER_LINE_TX_TIMEOUT) return false; if (g_eeprom.tx_timeout_timer == 0) timeout_secs = 30; // 30 sec else if (g_eeprom.tx_timeout_timer < (ARRAY_SIZE(g_sub_menu_tx_timeout) - 1)) timeout_secs = 60 * g_eeprom.tx_timeout_timer; // minutes else timeout_secs = 60 * 15; // 15 minutes if (timeout_secs == 0 || g_tx_timer_count_down_500ms == 0) return false; { const unsigned int line = 3; const unsigned int txt_width = 7 * 6; // 6 text chars const unsigned int bar_x = 2 + txt_width + 4; // X coord of bar graph const unsigned int bar_width = LCD_WIDTH - 1 - bar_x; const unsigned int secs = g_tx_timer_count_down_500ms / 2; const unsigned int level = ((secs * bar_width) + (timeout_secs / 2)) / timeout_secs; // with rounding // const unsigned int level = (((timeout_secs - secs) * bar_width) + (timeout_secs / 2)) / timeout_secs; // with rounding const unsigned int len = (level <= bar_width) ? level : bar_width; uint8_t *p_line = g_frame_buffer[line]; char s[17]; if (now) memset(p_line, 0, LCD_WIDTH); sprintf(s, "TX %u", secs); #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold(s, 2, 0, line); #else UI_PrintStringSmall(s, 2, 0, line); #endif draw_bar(p_line + bar_x, len, bar_width); if (now) ST7565_BlitFullScreen(); } return true; } #endif void UI_drawBars(uint8_t *p, const unsigned int level) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wimplicit-fallthrough=" switch (level) { default: case 7: memcpy(p + 20, BITMAP_ANTENNA_LEVEL6, sizeof(BITMAP_ANTENNA_LEVEL6)); case 6: memcpy(p + 17, BITMAP_ANTENNA_LEVEL5, sizeof(BITMAP_ANTENNA_LEVEL5)); case 5: memcpy(p + 14, BITMAP_ANTENNA_LEVEL4, sizeof(BITMAP_ANTENNA_LEVEL4)); case 4: memcpy(p + 11, BITMAP_ANTENNA_LEVEL3, sizeof(BITMAP_ANTENNA_LEVEL3)); case 3: memcpy(p + 8, BITMAP_ANTENNA_LEVEL2, sizeof(BITMAP_ANTENNA_LEVEL2)); case 2: memcpy(p + 5, BITMAP_ANTENNA_LEVEL1, sizeof(BITMAP_ANTENNA_LEVEL1)); case 1: memcpy(p + 0, BITMAP_ANTENNA, sizeof(BITMAP_ANTENNA)); break; case 0: memset(p + 0, 0, sizeof(BITMAP_ANTENNA)); break; } #pragma GCC diagnostic pop } #ifdef ENABLE_TX_AUDIO_BAR uint32_t sqrt16(uint32_t value) { // return square root of 'value' unsigned int shift = 16; // this is the number of bits supplied in 'value' .. 2 ~ 32 uint32_t bit = 1u << --shift; uint32_t sqrti = 0; while (bit) { const uint32_t temp = ((sqrti << 1) | bit) << shift--; if (value >= temp) { value -= temp; sqrti |= bit; } bit >>= 1; } return sqrti; } bool UI_DisplayAudioBar(const bool now) { if (g_current_function != FUNCTION_TRANSMIT || g_screen_to_display != DISPLAY_MAIN) return false; if (center_line != CENTER_LINE_NONE && center_line != CENTER_LINE_AUDIO_BAR) return false; if (g_dtmf_call_state != DTMF_CALL_STATE_NONE) return false; #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) if (g_alarm_state != ALARM_STATE_OFF) return false; #endif if (g_setting_mic_bar) { const unsigned int line = 3; const unsigned int txt_width = 7 * 3; // 3 text chars const unsigned int bar_x = 2 + txt_width + 4; // X coord of bar graph const unsigned int bar_width = LCD_WIDTH - 1 - bar_x; const unsigned int secs = g_tx_timer_count_down_500ms / 2; uint8_t *p_line = g_frame_buffer[line]; char s[16]; if (now) memset(p_line, 0, LCD_WIDTH); // TX timeout seconds sprintf(s, "%3u", secs); #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold(s, 2, 0, line); #else UI_PrintStringSmall(s, 2, 0, line); #endif { // TX audio level const unsigned int voice_amp = BK4819_GetVoiceAmplitudeOut(); // 15:0 // const unsigned int max = 65535; // const unsigned int level = ((voice_amp * bar_width) + (max / 2)) / max; // with rounding // const unsigned int len = (level <= bar_width) ? level : bar_width; // make non-linear to make more sensitive at low values const unsigned int level = voice_amp * 8; const unsigned int sqrt_level = sqrt16((level < 65535) ? level : 65535); const unsigned int len = (sqrt_level <= bar_width) ? sqrt_level : bar_width; draw_bar(p_line + bar_x, len, bar_width); if (now) ST7565_BlitFullScreen(); } } return true; } #endif #ifdef ENABLE_RX_SIGNAL_BAR bool UI_DisplayRSSIBar(const int16_t rssi, const bool now) { if (g_setting_rssi_bar) { // const int16_t s0_dBm = -127; // S0 .. base level const int16_t s0_dBm = -147; // S0 .. base level const int16_t s9_dBm = s0_dBm + (6 * 9); // S9 .. 6dB/S-Point const int16_t bar_max_dBm = s9_dBm + 30; // S9+30dB // const int16_t bar_min_dBm = s0_dBm + (6 * 0); // S0 const int16_t bar_min_dBm = s0_dBm + (6 * 4); // S4 // ************ const unsigned int txt_width = 7 * 8; // 8 text chars const unsigned int bar_x = 2 + txt_width + 4; // X coord of bar graph const unsigned int bar_width = LCD_WIDTH - 1 - bar_x; const int16_t rssi_dBm = (rssi / 2) - 160; const int16_t clamped_dBm = (rssi_dBm <= bar_min_dBm) ? bar_min_dBm : (rssi_dBm >= bar_max_dBm) ? bar_max_dBm : rssi_dBm; const unsigned int bar_range_dB = bar_max_dBm - bar_min_dBm; const unsigned int len = ((clamped_dBm - bar_min_dBm) * bar_width) / bar_range_dB; const unsigned int line = 3; uint8_t *p_line = g_frame_buffer[line]; char s[16]; #ifdef ENABLE_KEYLOCK if (g_eeprom.key_lock && g_keypad_locked > 0) return false; // display is in use #endif if (g_current_function == FUNCTION_TRANSMIT || g_screen_to_display != DISPLAY_MAIN || g_dtmf_call_state != DTMF_CALL_STATE_NONE) return false; // display is in use if (now) memset(p_line, 0, LCD_WIDTH); if (rssi_dBm >= (s9_dBm + 6)) { // S9+XXdB, 1dB increment const char *fmt[] = {"%3d 9+%u ", "%3d 9+%2u "}; const unsigned int s9_dB = ((rssi_dBm - s9_dBm) <= 99) ? rssi_dBm - s9_dBm : 99; sprintf(s, (s9_dB < 10) ? fmt[0] : fmt[1], rssi_dBm, s9_dB); } else { // S0 ~ S9, 6dB per S-point const unsigned int s_level = (rssi_dBm >= s0_dBm) ? (rssi_dBm - s0_dBm) / 6 : 0; sprintf(s, "%4d S%u ", rssi_dBm, s_level); } UI_PrintStringSmall(s, 2, 0, line); draw_bar(p_line + bar_x, len, bar_width); if (now) ST7565_BlitFullScreen(); return true; } return false; } #endif void UI_update_rssi(const int16_t rssi, const int vfo) { #ifdef ENABLE_RX_SIGNAL_BAR if (center_line == CENTER_LINE_RSSI) { // optional larger RSSI dBm, S-point and bar level if (g_current_function == FUNCTION_RECEIVE || g_current_function == FUNCTION_MONITOR) { UI_DisplayRSSIBar(rssi, true); } } #endif { // original little RS bars // const int16_t dBm = (rssi / 2) - 160; const uint8_t Line = (vfo == 0) ? 3 : 7; uint8_t *p_line = g_frame_buffer[Line - 1]; uint8_t rssi_level = 0; // TODO: sort out all 8 values from the eeprom #if 1 const unsigned int band = g_rx_vfo->band; const int16_t level0 = g_eeprom_rssi_calib[band][0]; const int16_t level1 = g_eeprom_rssi_calib[band][1]; const int16_t level2 = g_eeprom_rssi_calib[band][2]; const int16_t level3 = g_eeprom_rssi_calib[band][3]; #else const int16_t level0 = (-115 + 160) * 2; // -115dBm const int16_t level1 = ( -89 + 160) * 2; // -89dBm const int16_t level2 = ( -64 + 160) * 2; // -64dBm const int16_t level3 = ( -39 + 160) * 2; // -39dBm #endif // create intermediate threshold values (linear interpolation) to make full use of the available RSSI bars/graphics const int16_t level01 = (level0 + level1) / 2; const int16_t level12 = (level1 + level2) / 2; const int16_t level23 = (level2 + level3) / 2; g_vfo_rssi[vfo] = rssi; if (rssi >= level3) rssi_level = 7; else if (rssi >= level23) rssi_level = 6; else if (rssi >= level2) rssi_level = 5; else if (rssi >= level12) rssi_level = 4; else if (rssi >= level1) rssi_level = 3; else if (rssi >= level01) rssi_level = 2; else if (rssi >= level0 || g_current_function == FUNCTION_MONITOR || g_current_function == FUNCTION_NEW_RECEIVE) { rssi_level = 1; } if (g_vfo_rssi_bar_level[vfo] == rssi_level) return; g_vfo_rssi_bar_level[vfo] = rssi_level; // ********************************************************** #ifdef ENABLE_KEYLOCK if (g_eeprom.key_lock && g_keypad_locked > 0) return; // display is in use #endif if (g_current_function == FUNCTION_TRANSMIT || g_screen_to_display != DISPLAY_MAIN) return; // display is in use p_line = g_frame_buffer[Line - 1]; memset(p_line, 0, 23); // untested !!! if (rssi_level == 0) p_line = NULL; else UI_drawBars(p_line, rssi_level); ST7565_DrawLine(0, Line, 23, p_line); } } // *************************************************************************** void big_freq(const uint32_t frequency, const unsigned int x, const unsigned int line) { char str[9]; NUMBER_ToDigits(frequency, str); // show the main large frequency digits UI_DisplayFrequency(str, x, line, false, false); // show the remaining 2 small frequency digits #ifdef ENABLE_TRIM_TRAILING_ZEROS { unsigned int small_num = 2; if (str[7] == 0) { small_num--; if (str[6] == 0) small_num--; } UI_Displaysmall_digits(small_num, str + 6, x + 81, line + 1, true); } #else UI_Displaysmall_digits(2, str + 6, x + 81, line + 1, true); #endif } void UI_DisplayMain(void) { #ifndef ENABLE_BIG_FREQ const unsigned int smallest_char_spacing = ARRAY_SIZE(g_font3x5[0]) + 1; #endif const unsigned int line0 = 0; // text screen line const unsigned int line1 = 4; char str[22]; unsigned int vfo_num; center_line = CENTER_LINE_NONE; // #ifdef SINGLE_VFO_CHAN // const bool single_vfo = (g_eeprom.dual_watch == DUAL_WATCH_OFF && g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? true : false; // #else const bool single_vfo = false; // #endif // clear the screen memset(g_frame_buffer, 0, sizeof(g_frame_buffer)); if (g_serial_config_count_down_500ms > 0) { backlight_turn_on(10); // 5 seconds UI_PrintString("UART", 0, LCD_WIDTH, 1, 8); UI_PrintString("CONFIG COMMS", 0, LCD_WIDTH, 3, 8); ST7565_BlitFullScreen(); return; } #ifdef ENABLE_KEYLOCK if (g_eeprom.key_lock && g_keypad_locked > 0) { // tell user how to unlock the keyboard backlight_turn_on(10); // 5 seconds UI_PrintString("Long press #", 0, LCD_WIDTH, 1, 8); UI_PrintString("to unlock", 0, LCD_WIDTH, 3, 8); ST7565_BlitFullScreen(); return; } #endif for (vfo_num = 0; vfo_num < 2; vfo_num++) { const unsigned int line = (vfo_num == 0) ? line0 : line1; unsigned int channel = g_eeprom.tx_vfo; // unsigned int tx_channel = (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? g_eeprom.rx_vfo : g_eeprom.tx_vfo; const bool same_vfo = (channel == vfo_num) ? true : false; uint8_t *p_line0 = g_frame_buffer[line + 0]; uint8_t *p_line1 = g_frame_buffer[line + 1]; unsigned int mode = 0; unsigned int state; if (single_vfo) { // we're in single VFO mode - screen is dedicated to just one VFO if (!same_vfo) continue; // skip the unused vfo } if (g_eeprom.dual_watch != DUAL_WATCH_OFF && g_rx_vfo_is_active) channel = g_eeprom.rx_vfo; // we're currently monitoring the other VFO if (channel != vfo_num) { if (g_dtmf_call_state != DTMF_CALL_STATE_NONE || g_dtmf_is_tx || g_dtmf_input_mode) { // show DTMF stuff char contact[17]; if (!g_dtmf_input_mode) { memset(contact, 0, sizeof(contact)); if (g_dtmf_call_state == DTMF_CALL_STATE_CALL_OUT) { strcpy(str, (g_dtmf_state == DTMF_STATE_CALL_OUT_RSP) ? "CALL OUT RESP" : "CALL OUT"); } else if (g_dtmf_call_state == DTMF_CALL_STATE_RECEIVED || g_dtmf_call_state == DTMF_CALL_STATE_RECEIVED_STAY) { const bool found = DTMF_FindContact(g_dtmf_caller, contact); contact[8] = 0; sprintf(str, "FROM %s", found ? contact : g_dtmf_caller); } else if (g_dtmf_is_tx) { strcpy(str, (g_dtmf_state == DTMF_STATE_TX_SUCC) ? "DTMF TX SUCC" : "DTMF TX"); } } else { sprintf(str, ">%s", g_dtmf_input_box); } str[16] = 0; UI_PrintString(str, 2, 0, 0 + (vfo_num * 3), 8); memset(str, 0, sizeof(str)); if (!g_dtmf_input_mode) { memset(contact, 0, sizeof(contact)); if (g_dtmf_call_state == DTMF_CALL_STATE_CALL_OUT) { const bool found = DTMF_FindContact(g_dtmf_string, contact); contact[15] = 0; sprintf(str, ">%s", found ? contact : g_dtmf_string); } else if (g_dtmf_call_state == DTMF_CALL_STATE_RECEIVED || g_dtmf_call_state == DTMF_CALL_STATE_RECEIVED_STAY) { const bool found = DTMF_FindContact(g_dtmf_callee, contact); contact[15] = 0; sprintf(str, ">%s", found ? contact : g_dtmf_callee); } else if (g_dtmf_is_tx) { sprintf(str, ">%s", g_dtmf_string); } } str[16] = 0; UI_PrintString(str, 2, 0, 2 + (vfo_num * 3), 8); center_line = CENTER_LINE_IN_USE; continue; } // highlight the selected/used VFO with a marker if (!single_vfo && same_vfo) memcpy(p_line0 + 0, BITMAP_VFO_DEFAULT, sizeof(BITMAP_VFO_DEFAULT)); else if (g_eeprom.cross_vfo_rx_tx != CROSS_BAND_OFF) memcpy(p_line0 + 0, BITMAP_VFO_NOT_DEFAULT, sizeof(BITMAP_VFO_NOT_DEFAULT)); } else if (!single_vfo) { // highlight the selected/used VFO with a marker if (same_vfo) memcpy(p_line0 + 0, BITMAP_VFO_DEFAULT, sizeof(BITMAP_VFO_DEFAULT)); else //if (g_eeprom.cross_vfo_rx_tx != CROSS_BAND_OFF) memcpy(p_line0 + 0, BITMAP_VFO_NOT_DEFAULT, sizeof(BITMAP_VFO_NOT_DEFAULT)); } if (g_current_function == FUNCTION_TRANSMIT) { // transmitting #ifdef ENABLE_ALARM if (g_alarm_state == ALARM_STATE_ALARM) mode = 1; else #endif { channel = (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? g_eeprom.rx_vfo : g_eeprom.tx_vfo; if (channel == vfo_num) { // show the TX symbol mode = 1; #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold("TX", 14, 0, line); #else UI_PrintStringSmall("TX", 14, 0, line); #endif } } } else { // receiving .. show the RX symbol mode = 2; if ((g_current_function == FUNCTION_RECEIVE || g_current_function == FUNCTION_MONITOR || g_current_function == FUNCTION_NEW_RECEIVE) && g_eeprom.rx_vfo == vfo_num) { #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold("RX", 14, 0, line); #else UI_PrintStringSmall("RX", 14, 0, line); #endif } } if (g_eeprom.screen_channel[vfo_num] <= USER_CHANNEL_LAST) { // channel mode const unsigned int x = 2; const bool inputting = (g_input_box_index == 0 || g_eeprom.tx_vfo != vfo_num) ? false : true; if (!inputting) NUMBER_ToDigits(g_eeprom.screen_channel[vfo_num] + 1, str); // show the memory channel number else memcpy(str + 5, g_input_box, 3); // show the input text UI_PrintStringSmall("M", x, 0, line + 1); UI_Displaysmall_digits(3, str + 5, x + 7, line + 1, inputting); } else if (IS_FREQ_CHANNEL(g_eeprom.screen_channel[vfo_num])) { // frequency mode // show the frequency band number const unsigned int x = 2; // was 14 // sprintf(String, "FB%u", 1 + g_eeprom.screen_channel[vfo_num] - FREQ_CHANNEL_FIRST); sprintf(str, "VFO%u", 1 + g_eeprom.screen_channel[vfo_num] - FREQ_CHANNEL_FIRST); UI_PrintStringSmall(str, x, 0, line + 1); } #ifdef ENABLE_NOAA else { if (g_input_box_index == 0 || g_eeprom.tx_vfo != vfo_num) { // channel number sprintf(str, "N%u", 1 + g_eeprom.screen_channel[vfo_num] - NOAA_CHANNEL_FIRST); } else { // user entering channel number sprintf(str, "N%u%u", '0' + g_input_box[0], '0' + g_input_box[1]); } UI_PrintStringSmall(str, 7, 0, line + 1); } #endif // ************ state = g_vfo_state[vfo_num]; #ifdef ENABLE_ALARM if (g_current_function == FUNCTION_TRANSMIT && g_alarm_state == ALARM_STATE_ALARM) { channel = (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? g_eeprom.rx_vfo : g_eeprom.tx_vfo; if (channel == vfo_num) state = VFO_STATE_ALARM; } #endif if (state != VFO_STATE_NORMAL) { const char *state_list[] = {"", "BUSY", "BAT LOW", "TX DISABLE", "TIMEOUT", "ALARM", "VOLT HIGH"}; if (state < ARRAY_SIZE(state_list)) UI_PrintString(state_list[state], 31, 0, line, 8); } else if (g_input_box_index > 0 && IS_FREQ_CHANNEL(g_eeprom.screen_channel[vfo_num]) && g_eeprom.tx_vfo == vfo_num) { // user entering a frequency UI_DisplayFrequency(g_input_box, 32, line, true, false); // center_line = CENTER_LINE_IN_USE; } else { const unsigned int x = 32; uint32_t frequency = g_eeprom.vfo_info[vfo_num].p_rx->frequency; if (g_current_function == FUNCTION_TRANSMIT) { // transmitting channel = (g_eeprom.cross_vfo_rx_tx == CROSS_BAND_OFF) ? g_eeprom.rx_vfo : g_eeprom.tx_vfo; if (channel == vfo_num) frequency = g_eeprom.vfo_info[vfo_num].p_tx->frequency; } if (g_eeprom.screen_channel[vfo_num] <= USER_CHANNEL_LAST) { // it's a channel #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wimplicit-fallthrough=" switch (g_eeprom.channel_display_mode) { case MDF_FREQUENCY: // just channel frequency #ifdef ENABLE_BIG_FREQ big_freq(frequency, x, line); #else // show the frequency in the main font sprintf(str, "%03u.%05u", frequency / 100000, frequency % 100000); #ifdef ENABLE_TRIM_TRAILING_ZEROS NUMBER_trim_trailing_zeros(str); #endif UI_PrintString(str, x, 0, line, 8); #endif break; case MDF_CHANNEL: // just channel number sprintf(str, "CH-%03u", g_eeprom.screen_channel[vfo_num] + 1); UI_PrintString(str, x, 0, line, 8); break; case MDF_NAME: // channel name case MDF_NAME_FREQ: // channel name and frequency BOARD_fetchChannelName(str, g_eeprom.screen_channel[vfo_num]); if (str[0] == 0) { // no channel name available, channel number instead sprintf(str, "CH-%03u", 1 + g_eeprom.screen_channel[vfo_num]); } if (g_eeprom.channel_display_mode == MDF_NAME) { // just the name UI_PrintString(str, x + 4, 0, line, 8); } else { // name & frequency // name #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold(str, x + 4, 0, line); #else UI_PrintStringSmall(str, x + 4, 0, line); #endif // frequency sprintf(str, "%03u.%05u", frequency / 100000, frequency % 100000); #ifdef ENABLE_TRIM_TRAILING_ZEROS NUMBER_trim_trailing_zeros(str); #endif UI_PrintStringSmall(str, x + 4, 0, line + 1); } break; } #pragma GCC diagnostic pop } else // if (IS_FREQ_CHANNEL(g_eeprom.screen_channel[vfo_num])) { // frequency mode #ifdef ENABLE_BIG_FREQ big_freq(frequency, x, line); #else // show the frequency in the main font sprintf(str, "%03u.%05u", frequency / 100000, frequency % 100000); #ifdef ENABLE_TRIM_TRAILING_ZEROS NUMBER_trim_trailing_zeros(str); #endif UI_PrintString(str, x, 0, line, 8); #endif } // show channel symbols if (g_eeprom.screen_channel[vfo_num] <= USER_CHANNEL_LAST) //if (IS_NOT_NOAA_CHANNEL(g_eeprom.screen_channel[vfo_num])) { // it's a user channel or VFO unsigned int x = LCD_WIDTH - 1 - sizeof(BITMAP_SCANLIST2) - sizeof(BITMAP_SCANLIST1); const uint8_t attributes = g_user_channel_attributes[g_eeprom.screen_channel[vfo_num]]; if (attributes & USER_CH_SCANLIST1) memcpy(p_line0 + x, BITMAP_SCANLIST1, sizeof(BITMAP_SCANLIST1)); x += sizeof(BITMAP_SCANLIST1); if (attributes & USER_CH_SCANLIST2) memcpy(p_line0 + x, BITMAP_SCANLIST2, sizeof(BITMAP_SCANLIST2)); //x += sizeof(BITMAP_SCANLIST2); } #ifdef ENABLE_BIG_FREQ // no room for these symbols #else { unsigned int x = LCD_WIDTH + LCD_WIDTH - 1 - (smallest_char_spacing * 1) - (smallest_char_spacing * 4); if (IS_FREQ_CHANNEL(g_eeprom.screen_channel[vfo_num])) { //g_eeprom.vfo_info[vfo_num].freq_in_channel = BOARD_find_channel(frequency); if (g_eeprom.vfo_info[vfo_num].freq_in_channel <= USER_CHANNEL_LAST) { // the channel number that contains this VFO frequency sprintf(str, "%03u", 1 + g_eeprom.vfo_info[vfo_num].freq_in_channel); UI_PrintStringSmallest(str, x, (line + 0) * 8, false, true); } } x += smallest_char_spacing * 4; if (g_eeprom.vfo_info[vfo_num].compand) UI_PrintStringSmallest("C", x, (line + 0) * 8, false, true); //x += smallest_char_spacing * 1; } #endif } // ************ { // show the TX/RX level uint8_t Level = 0; if (mode == 1) { // TX power level switch (g_rx_vfo->output_power) { case OUTPUT_POWER_LOW: Level = 2; break; case OUTPUT_POWER_MID: Level = 4; break; case OUTPUT_POWER_HIGH: Level = 6; break; } } else if (mode == 2) { // RX signal level //#ifndef ENABLE_RX_SIGNAL_BAR // antenna bar graph if (g_vfo_rssi_bar_level[vfo_num] > 0) Level = g_vfo_rssi_bar_level[vfo_num]; //#endif } UI_drawBars(p_line1 + LCD_WIDTH, Level); } // ************ str[0] = '\0'; if (g_eeprom.vfo_info[vfo_num].am_mode) { // show the AM symbol strcpy(str, "AM"); } else { // or show the CTCSS/DCS symbol const freq_config_t *pConfig = (mode == 1) ? g_eeprom.vfo_info[vfo_num].p_tx : g_eeprom.vfo_info[vfo_num].p_rx; const unsigned int code_type = pConfig->code_type; const char *code_list[] = {"", "CT", "DCS", "DCR"}; if (code_type < ARRAY_SIZE(code_list)) strcpy(str, code_list[code_type]); } UI_PrintStringSmall(str, LCD_WIDTH + 24, 0, line + 1); #ifdef ENABLE_TX_WHEN_AM if (state == VFO_STATE_NORMAL || state == VFO_STATE_ALARM) #else if ((state == VFO_STATE_NORMAL || state == VFO_STATE_ALARM) && !g_eeprom.vfo_info[vfo_num].am_mode) // not allowed to TX if in AM mode #endif { if (FREQUENCY_tx_freq_check(g_eeprom.vfo_info[vfo_num].p_tx->frequency) == 0) { // show the TX power const char pwr_list[] = "LMH"; const unsigned int i = g_eeprom.vfo_info[vfo_num].output_power; str[0] = (i < ARRAY_SIZE(pwr_list)) ? pwr_list[i] : '\0'; str[1] = '\0'; UI_PrintStringSmall(str, LCD_WIDTH + 46, 0, line + 1); if (g_eeprom.vfo_info[vfo_num].freq_config_rx.frequency != g_eeprom.vfo_info[vfo_num].freq_config_tx.frequency) { // show the TX offset symbol const char dir_list[] = "\0+-"; const unsigned int i = g_eeprom.vfo_info[vfo_num].tx_offset_freq_dir; str[0] = (i < sizeof(dir_list)) ? dir_list[i] : '?'; str[1] = '\0'; UI_PrintStringSmall(str, LCD_WIDTH + 54, 0, line + 1); } } } // show the TX/RX reverse symbol if (g_eeprom.vfo_info[vfo_num].frequency_reverse) UI_PrintStringSmall("R", LCD_WIDTH + 62, 0, line + 1); { // show the narrow band symbol str[0] = '\0'; if (g_eeprom.vfo_info[vfo_num].channel_bandwidth == BANDWIDTH_NARROW) { str[0] = 'N'; str[1] = '\0'; } UI_PrintStringSmall(str, LCD_WIDTH + 70, 0, line + 1); } // show the DTMF decoding symbol #ifdef ENABLE_KILL_REVIVE if (g_eeprom.vfo_info[vfo_num].dtmf_decoding_enable || g_setting_radio_disabled) UI_PrintStringSmall("DTMF", LCD_WIDTH + 78, 0, line + 1); #else if (g_eeprom.vfo_info[vfo_num].dtmf_decoding_enable) UI_PrintStringSmall("DTMF", LCD_WIDTH + 78, 0, line + 1); //UI_PrintStringSmall4x5("DTMF", LCD_WIDTH + 78, 0, line + 1); // font table is currently wrong //UI_PrintStringSmallest("DTMF", LCD_WIDTH + 78, (line + 1) * 8, false, true); #endif // show the audio scramble symbol if (g_eeprom.vfo_info[vfo_num].scrambling_type > 0 && g_setting_scramble_enable) UI_PrintStringSmall("SCR", LCD_WIDTH + 106, 0, line + 1); } if (center_line == CENTER_LINE_NONE) { // we're free to use the middle line const bool rx = (g_current_function == FUNCTION_RECEIVE || g_current_function == FUNCTION_MONITOR || g_current_function == FUNCTION_NEW_RECEIVE); #ifdef ENABLE_TX_TIMEOUT_BAR // show the TX timeout count down if (UI_DisplayTXCountdown(false)) { center_line = CENTER_LINE_TX_TIMEOUT; } else #endif #ifdef ENABLE_TX_AUDIO_BAR // show the TX audio level if (UI_DisplayAudioBar(false)) { center_line = CENTER_LINE_AUDIO_BAR; } else #endif #if defined(ENABLE_AM_FIX) && defined(ENABLE_AM_FIX_SHOW_DATA) // show the AM-FIX debug data if (rx && g_eeprom.vfo_info[g_eeprom.rx_vfo].am_mode && g_setting_am_fix) { if (g_screen_to_display != DISPLAY_MAIN || g_dtmf_call_state != DTMF_CALL_STATE_NONE) return; center_line = CENTER_LINE_AM_FIX_DATA; AM_fix_print_data(g_eeprom.rx_vfo, str); UI_PrintStringSmall(str, 2, 0, 3); } else #endif #ifdef ENABLE_RX_SIGNAL_BAR // show the RX RSSI dBm, S-point and signal strength bar graph if (rx && g_setting_rssi_bar) { center_line = CENTER_LINE_RSSI; UI_DisplayRSSIBar(g_current_rssi[g_eeprom.rx_vfo], false); } else #endif if (rx || g_current_function == FUNCTION_FOREGROUND || g_current_function == FUNCTION_POWER_SAVE) { #if 1 if (g_setting_live_dtmf_decoder && g_dtmf_rx_live[0] != 0) { // show live DTMF decode const unsigned int len = strlen(g_dtmf_rx_live); const unsigned int idx = (len > (17 - 5)) ? len - (17 - 5) : 0; // limit to last 'n' chars if (g_screen_to_display != DISPLAY_MAIN || g_dtmf_call_state != DTMF_CALL_STATE_NONE) return; center_line = CENTER_LINE_DTMF_DEC; strcpy(str, "DTMF "); strcat(str, g_dtmf_rx_live + idx); UI_PrintStringSmall(str, 2, 0, 3); } #else if (g_setting_live_dtmf_decoder && g_dtmf_rx_index > 0) { // show live DTMF decode const unsigned int len = g_dtmf_rx_index; const unsigned int idx = (len > (17 - 5)) ? len - (17 - 5) : 0; // limit to last 'n' chars if (g_screen_to_display != DISPLAY_MAIN || g_dtmf_call_state != DTMF_CALL_STATE_NONE) return; center_line = CENTER_LINE_DTMF_DEC; strcpy(str, "DTMF "); strcat(str, g_dtmf_rx + idx); UI_PrintStringSmall(str, 2, 0, 3); } #endif #ifdef ENABLE_SHOW_CHARGE_LEVEL else if (g_charging_with_type_c) { // show the battery charge state if (g_screen_to_display != DISPLAY_MAIN || g_dtmf_call_state != DTMF_CALL_STATE_NONE) return; center_line = CENTER_LINE_CHARGE_DATA; sprintf(str, "Charge %u.%02uV %u%%", g_battery_voltage_average / 100, g_battery_voltage_average % 100, BATTERY_VoltsToPercent(g_battery_voltage_average)); UI_PrintStringSmall(str, 2, 0, 3); } #endif } } ST7565_BlitFullScreen(); } // ***************************************************************************