#include #include "bsp/dp32g030/crc.h" #include "mdc1200.h" #include "misc.h" // MDC1200 sync bit reversals and packet magic // // 24-bit pre-amble // 40-bit sync // //static const uint8_t header[] = {0x00, 0x00, 0x05, 0x55, 0x55, 0x55, 0x55, 0x07, 0x09, 0x2a, 0x44, 0x6f}; //static const uint8_t header[] = {0x00, 0x00, 0x0A, 0xAA, 0xAA, 0xAA, 0xAA, 0x07, 0x09, 0x2a, 0x44, 0x6f}; // //static const uint8_t header[] = {0x00, 0x00, 0x0A, 0xAA, 0xAA, 0xAA, 0xA0, 0xb6, 0x8e, 0x03, 0xbb, 0x14}; static const uint8_t header[] = {0x00, 0x00, 0x05, 0x55, 0x55, 0x55, 0x50, 0x29, 0x71, 0xfc, 0x44, 0xeb}; uint8_t bit_reverse_8(uint8_t n) { n = ((n >> 1) & 0x55u) | ((n << 1) & 0xAAu); n = ((n >> 2) & 0x33u) | ((n << 2) & 0xCCu); n = ((n >> 4) & 0x0Fu) | ((n << 4) & 0xF0u); return n; } uint16_t bit_reverse_16(uint16_t n) { // untested n = ((n >> 1) & 0x5555u) | ((n << 1) & 0xAAAAu); n = ((n >> 2) & 0x3333u) | ((n << 2) & 0xCCCCu); n = ((n >> 4) & 0x0F0Fu) | ((n << 4) & 0xF0F0u); n = ((n >> 8) & 0x00FFu) | ((n << 8) & 0xFF00u); return n; } uint32_t bit_reverse_32(uint32_t n) { n = ((n >> 1) & 0x55555555u) | ((n << 1) & 0xAAAAAAAAu); n = ((n >> 2) & 0x33333333u) | ((n << 2) & 0xCCCCCCCCu); n = ((n >> 4) & 0x0F0F0F0Fu) | ((n << 4) & 0xF0F0F0F0u); n = ((n >> 8) & 0x00FF00FFu) | ((n << 8) & 0xFF00FF00u); n = ((n >> 16) & 0x0000FFFFu) | ((n << 16) & 0xFFFF0000u); return n; } uint16_t reverse_bits(const uint16_t bits_in, const unsigned int num_bits) { uint16_t i; uint16_t bit; uint16_t bits_out; for (i = 1u << (num_bits - 1), bit = 1u, bits_out = 0u; i != 0; i >>= 1) { if (bits_in & i) bits_out |= bit; bit <<= 1; } return bits_out; } #if 1 uint16_t compute_crc(const uint8_t *data, const unsigned int data_len) { // using the reverse computation avoids having to reverse the bit order during and after unsigned int i; uint16_t crc = 0; for (i = 0; i < data_len; i++) { unsigned int k; crc ^= data[i]; for (k = 8; k > 0; k--) crc = (crc & 1u) ? (crc >> 1) ^ 0x8408 : crc >> 1; } crc ^= 0xffff; return crc; } #else uint16_t compute_crc(const uint8_t *data, const unsigned int data_len) { // this can be done using the CPU's own CRC calculator once we know we're ok unsigned int i; #if 0 uint16_t crc; CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_ENABLE; #else uint16_t crc = 0; #endif for (i = 0; i < data_len; i++) { #if 0 // bit reverse each data byte before adding it to the CRC // the cortex CPU might have an instruction to bit reverse for us ? // CRC_DATAIN = reverse_bits(data[i], 8); //CRC_DATAIN = bit_reverse_8(data[i]); #else uint8_t mask; // bit reverse each data byte before adding it to the CRC // the cortex CPU might have an instruction to bit reverse for us ? // const uint8_t bits = reverse_bits(data[i], 8); //const uint8_t bits = bit_reverse_8(*data++); for (mask = 0x0080; mask != 0; mask >>= 1) { uint16_t msb = crc & 0x8000; if (bits & mask) msb ^= 0x8000; crc <<= 1; if (msb) crc ^= 0x1021; } #endif } #if 0 crc = (uint16_t)CRC_DATAOUT; CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_DISABLE; #endif // bit reverse and invert the final CRC return reverse_bits(crc, 16) ^ 0xffff; // return bit_reverse_16(crc) ^ 0xffff; } #endif #define FEC_K 7 void error_correction(uint8_t *data) { int i; uint8_t csr[FEC_K]; uint8_t syn = 0; // uint8_t shift_reg = 0; syn = 0; for (i = 0; i < FEC_K; i++) csr[i] = 0; for (i = 0; i < FEC_K; i++) { const uint8_t bi = data[i]; int bit_num; for (bit_num = 0; bit_num < 8; bit_num++) { uint8_t b; int k; unsigned int ec = 0; #if 0 shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); b = ((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u; #else for (k = FEC_K - 1; k > 0; k--) csr[k] = csr[k - 1]; csr[0] = (bi >> bit_num) & 1u; b = (csr[0] + csr[2] + csr[5] + csr[6]) & 1u; #endif syn = (syn << 1) | (((b ^ (data[i + FEC_K] >> bit_num)) & 1u) ? 1u : 0u); if (syn & 0x80) ec++; if (syn & 0x20) ec++; if (syn & 0x04) ec++; if (syn & 0x02) ec++; if (ec >= 3) { // correct error int fix_i = i; int fix_j = bit_num - 7; syn ^= 0xA6; if (fix_j < 0) { --fix_i; fix_j += 8; } if (fix_i >= 0) data[fix_i] ^= 1u << fix_j; } } } } uint8_t * decode_data(uint8_t *data) { uint16_t crc1; uint16_t crc2; // (void)data; { // de-interleave unsigned int i; unsigned int k; uint8_t deinterleaved[(FEC_K * 2) * 8]; // de-interleave the received bits for (i = 0, k = 0; i < 16; i++) { unsigned int m; for (m = 0; m < FEC_K; m++) { const unsigned int n = (m * 16) + i; deinterleaved[k++] = (data[n >> 3] >> ((7 - n) & 7u)) & 1u; } } // copy the de-interleaved bits to the data buffer for (i = 0; i < (FEC_K * 2); i++) { unsigned int k; uint8_t b = 0; for (k = 0; k < 8; k++) if (deinterleaved[(i * 8) + k]) b |= 1u << k; data[i] = b; } } error_correction(data); crc1 = compute_crc(data, 4); crc2 = (data[5] << 8) | (data[4] << 0); if (crc1 != crc2) return NULL; // appears to be a valid packet // TODO: more stuff return NULL; } uint8_t * encode_data(uint8_t *data) { // R=1/2 K=7 convolutional coder // // op 0x01 // arg 0x80 // id 0x1234 // crc 0x2E3E // status 0x00 // FEC 0x6580A862DD8808 // // 01 80 1234 2E3E 00 6580A862DD8808 // // 1. reverse the bit order for each byte of the first 7 bytes (to undo the reversal performed for display, above) // 2. feed those bits into a shift register which is preloaded with all zeros // 3. for each bit, calculate the modulo-2 sum: bit(n-0) + bit(n-2) + bit(n-5) + bit(n-6) // 4. then for each byte of resulting output, again reverse those bits to generate the values shown above { // add the FEC bits to the end of the data unsigned int i; uint8_t shift_reg = 0; for (i = 0; i < FEC_K; i++) { unsigned int bit_num; const uint8_t bi = data[i]; uint8_t bo = 0; for (bit_num = 0; bit_num < 8; bit_num++) { shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); bo |= (((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u) << bit_num; } data[FEC_K + i] = bo; } } { // interleave the bits unsigned int i; unsigned int k; unsigned int m; uint8_t interleaved[(FEC_K * 2) * 8]; // bit interleaver for (i = 0, k = 0, m = 0; i < (FEC_K * 2); i++) { unsigned int bit_num; const uint8_t b = data[i]; for (bit_num = 0; bit_num < 8; bit_num++) { interleaved[k] = (b >> bit_num) & 1u; k += 16; if (k >= sizeof(interleaved)) k = ++m; } } // copy the interleaved bits back to the input/output buffer for (i = 0, k = 0; i < (FEC_K * 2); i++) { int bit_num; uint8_t b = 0; for (bit_num = 7; bit_num >= 0; bit_num--) if (interleaved[k++]) b |= 1u << bit_num; data[i] = b; } } return data + (FEC_K * 2); } void delta_modulation(uint8_t *data, const unsigned int size) { // xor succesive bits in the entire packet, including the bit reversing pre-amble uint8_t b1; unsigned int i; for (i = 0, b1 = 1u; i < size; i++) { int bit_num; uint8_t in = data[i]; uint8_t out = 0; for (bit_num = 7; bit_num >= 0; bit_num--) { const uint8_t b2 = (in >> bit_num) & 1u; if (b1 != b2) out |= 1u << bit_num; // previous bit and new bit are different b1 = b2; } data[i] = out; } } unsigned int MDC1200_encode_single_packet(uint8_t *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id) { unsigned int size; uint16_t crc; uint8_t *p = data; memcpy(p, header, sizeof(header)); p += sizeof(header); p[0] = op; p[1] = arg; p[2] = (unit_id >> 8) & 0x00ff; p[3] = (unit_id >> 0) & 0x00ff; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // unknown field (00 for PTTIDs, 76 for STS and MSG) p = encode_data(p); #if 0 { // test packet // // op 0x01, arg 0x80, id 0xB183 // const uint8_t test_packet[] = {0x07, 0x25, 0xDD, 0xD5, 0x9F, 0xC5, 0x3D, 0x89, 0x2D, 0xBD, 0x57, 0x35, 0xE7, 0x44}; memcpy(data + sizeof(header), test_packet, sizeof(test_packet)); } #endif size = (unsigned int)(p - data); delta_modulation(data, size); return size; // return 26; } unsigned int MDC1200_encode_double_packet(uint8_t *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id, const uint8_t b0, const uint8_t b1, const uint8_t b2, const uint8_t b3) { unsigned int size; uint16_t crc; uint8_t *p = data; memcpy(p, header, sizeof(header)); p += sizeof(header); p[0] = op; p[1] = arg; p[2] = (unit_id >> 8) & 0x00ff; p[3] = (unit_id >> 0) & 0x00ff; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // status byte p = encode_data(p); p[0] = b0; p[1] = b1; p[2] = b2; p[3] = b3; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // status byte p = encode_data(p); size = (unsigned int)(p - data); delta_modulation(data, size); return size; // return 40; } /* void test(void) { uint8_t data[14 + 14 + 5 + 7]; const int size = MDC1200_encode_single_packet(data, 0x12, 0x34, 0x5678); // const int size = MDC1200_encode_double_packet(data, 0x55, 0x34, 0x5678, 0x0a, 0x0b, 0x0c, 0x0d); } */