#include #include "driver/crc.h" #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) #include "driver/uart.h" #endif #include "mdc1200.h" #include "misc.h" #define FEC_K 7 // R=1/2 K=7 convolutional coder // ********************************************************** // pre-amble and sync pattern // // >= 24-bit pre-amble // 40-bit sync // const uint8_t mdc1200_pre_amble[] = {0x00, 0x00, 0x00}; const uint8_t mdc1200_sync[5] = {0x07, 0x09, 0x2a, 0x44, 0x6f}; // // before successive bit xorring: // 0x07092A446F // 0000 0111 0000 1001 0010 1010 0100 0100 0110 1111 // // after successive bit xorring: // 0000 0100 1000 1101 1011 1111 0110 0110 0101 1000 // 0x048DBF6658 // uint8_t mdc1200_sync_suc_xor[sizeof(mdc1200_sync)]; /* uint8_t bit_reverse_8(uint8_t n) { n = ((n >> 1) & 0x55u) | ((n << 1) & 0xAAu); n = ((n >> 2) & 0x33u) | ((n << 2) & 0xCCu); n = ((n >> 4) & 0x0Fu) | ((n << 4) & 0xF0u); return n; } uint16_t bit_reverse_16(uint16_t n) { // untested n = ((n >> 1) & 0x5555u) | ((n << 1) & 0xAAAAu); n = ((n >> 2) & 0x3333u) | ((n << 2) & 0xCCCCu); n = ((n >> 4) & 0x0F0Fu) | ((n << 4) & 0xF0F0u); n = ((n >> 8) & 0x00FFu) | ((n << 8) & 0xFF00u); return n; } uint32_t bit_reverse_32(uint32_t n) { n = ((n >> 1) & 0x55555555u) | ((n << 1) & 0xAAAAAAAAu); n = ((n >> 2) & 0x33333333u) | ((n << 2) & 0xCCCCCCCCu); n = ((n >> 4) & 0x0F0F0F0Fu) | ((n << 4) & 0xF0F0F0F0u); n = ((n >> 8) & 0x00FF00FFu) | ((n << 8) & 0xFF00FF00u); n = ((n >> 16) & 0x0000FFFFu) | ((n << 16) & 0xFFFF0000u); return n; } */ // ************************************ // common #if 1 uint16_t compute_crc(const void *data, const unsigned int data_len) { // let the CPU's hardware do some work :) uint16_t crc; CRC_InitReverse(); crc = CRC_Calculate(data, data_len); CRC_Init(); return crc; } #elif 1 uint16_t compute_crc(const void *data, const unsigned int data_len) { // using the reverse computation and polynominal avoids having to reverse the bit order during and after unsigned int i; const uint8_t *data8 = (const uint8_t *)data; uint16_t crc = 0; for (i = 0; i < data_len; i++) { unsigned int k; crc ^= data8[i]; for (k = 8; k > 0; k--) crc = (crc & 1u) ? (crc >> 1) ^ 0x8408 : crc >> 1; } return crc ^ 0xffff; } #else uint16_t compute_crc(const void *data, const unsigned int data_len) { unsigned int i; const uint8_t *data8 = (const uint8_t *)data; uint16_t crc = 0; for (i = 0; i < data_len; i++) { uint8_t mask; // bit reverse each data byte const uint8_t bits = bit_reverse_8(*data8++); for (mask = 0x0080; mask != 0; mask >>= 1) { uint16_t msb = crc & 0x8000; if (bits & mask) msb ^= 0x8000; crc <<= 1; if (msb) crc ^= 0x1021; } } // bit reverse and invert the final CRC return bit_reverse_16(crc) ^ 0xffff; } #endif // ************************************ // RX void error_correction(void *data) { // can correct up to 3 or 4 corrupted bits (I think) int i; uint8_t shift_reg; uint8_t syn; uint8_t *data8 = (uint8_t *)data; for (i = 0, shift_reg = 0, syn = 0; i < FEC_K; i++) { const uint8_t bi = data8[i]; int bit_num; for (bit_num = 0; bit_num < 8; bit_num++) { uint8_t b; unsigned int k = 0; shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); b = ((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u; syn = (syn << 1) | (((b ^ (data8[i + FEC_K] >> bit_num)) & 1u) ? 1u : 0u); if (syn & 0x80) k++; if (syn & 0x20) k++; if (syn & 0x04) k++; if (syn & 0x02) k++; if (k >= 3) { // correct a bit error int ii = i; int bn = bit_num - 7; if (bn < 0) { bn += 8; ii--; } if (ii >= 0) data8[ii] ^= 1u << bn; // fix a bit syn ^= 0xA6; // 10100110 } } } } /* void xor_demodulation(void *data, const unsigned int size, const bool sync_inverted) { unsigned int i; uint8_t *data8 = (uint8_t *)data; uint8_t prev_bit = 0; for (i = 0; i < size; i++) { int bit_num; uint8_t in = data8[i]; uint8_t out = 0; for (bit_num = 7; bit_num >= 0; bit_num--) { const uint8_t new_bit = (in >> bit_num) & 1u; uint8_t bit = prev_bit ^ new_bit; if (sync_inverted) bit ^= 1u; prev_bit = new_bit; out |= bit << bit_num; } data8[i] = out; } } */ bool decode_data(void *data) { uint16_t crc1; uint16_t crc2; uint8_t *data8 = (uint8_t *)data; { // de-interleave unsigned int i; unsigned int k; unsigned int m; uint8_t deinterleaved[(FEC_K * 2) * 8]; // temp individual bit storage // interleave order // 0, 16, 32, 48, 64, 80, 96, // 1, 17, 33, 49, 65, 81, 97, // 2, 18, 34, 50, 66, 82, 98, // 3, 19, 35, 51, 67, 83, 99, // 4, 20, 36, 52, 68, 84, 100, // 5, 21, 37, 53, 69, 85, 101, // 6, 22, 38, 54, 70, 86, 102, // 7, 23, 39, 55, 71, 87, 103, // 8, 24, 40, 56, 72, 88, 104, // 9, 25, 41, 57, 73, 89, 105, // 10, 26, 42, 58, 74, 90, 106, // 11, 27, 43, 59, 75, 91, 107, // 12, 28, 44, 60, 76, 92, 108, // 13, 29, 45, 61, 77, 93, 109, // 14, 30, 46, 62, 78, 94, 110, // 15, 31, 47, 63, 79, 95, 111 // de-interleave the received bits for (i = 0, k = 0; i < 16; i++) { for (m = 0; m < FEC_K; m++) { const unsigned int n = (m * 16) + i; deinterleaved[k++] = (data8[n >> 3] >> ((7 - n) & 7u)) & 1u; } } // copy the de-interleaved bits back into the data buffer for (i = 0, m = 0; i < (FEC_K * 2); i++) { unsigned int k; uint8_t b = 0; for (k = 0; k < 8; k++) if (deinterleaved[m++]) b |= 1u << k; data8[i] = b; } } // try to correct the odd corrupted bit error_correction(data); // rx'ed de-interleaved data (min 14 bytes) looks like this .. // // OP ARG ID CRC STATUS FEC bits // 01 80 1234 2E3E 00 6580A862DD8808 crc1 = compute_crc(data, 4); crc2 = ((uint16_t)data8[5] << 8) | (data8[4] << 0); return (crc1 == crc2) ? true : false; } // ********************************************************** // TX void xor_modulation(void *data, const unsigned int size) { // exclusive-or succesive bits - the entire packet unsigned int i; uint8_t *data8 = (uint8_t *)data; uint8_t prev_bit = 0; for (i = 0; i < size; i++) { int bit_num; uint8_t in = data8[i]; uint8_t out = 0; for (bit_num = 7; bit_num >= 0; bit_num--) { const uint8_t new_bit = (in >> bit_num) & 1u; if (new_bit != prev_bit) out |= 1u << bit_num; // previous bit and new bit are different - send a '1' prev_bit = new_bit; } data8[i] = out ^ 0xff; } } uint8_t * encode_data(void *data) { // R=1/2 K=7 convolutional coder // // OP ARG ID CRC STATUS FEC bits // 01 80 1234 2E3E 00 6580A862DD8808 // // 1. reverse the bit order for each byte of the first 7 bytes (to undo the reversal performed for display, above) // 2. feed those bits into a shift register which is preloaded with all zeros // 3. for each bit, calculate the modulo-2 sum: bit(n-0) + bit(n-2) + bit(n-5) + bit(n-6) // 4. then for each byte of resulting output, again reverse those bits to generate the values shown above uint8_t *data8 = (uint8_t *)data; { // add the FEC bits to the end of the data unsigned int i; uint8_t shift_reg = 0; for (i = 0; i < FEC_K; i++) { unsigned int bit_num; const uint8_t bi = data8[i]; uint8_t bo = 0; for (bit_num = 0; bit_num < 8; bit_num++) { shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); bo |= (((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u) << bit_num; } data8[FEC_K + i] = bo; } } // 01 00 00 23 DD F0 00 65 00 00 0F 45 1F 21 /* #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) { const unsigned int size = FEC_K * 2; unsigned int i; UART_printf("mdc1200 tx1 %u ", size); for (i = 0; i < size; i++) UART_printf(" %02X", data8[i]); UART_SendText("\r\n"); } #endif */ { // interleave the bits unsigned int i; unsigned int k; uint8_t interleaved[(FEC_K * 2) * 8]; // temp individual bit storage // interleave order // 0, 16, 32, 48, 64, 80, 96, // 1, 17, 33, 49, 65, 81, 97, // 2, 18, 34, 50, 66, 82, 98, // 3, 19, 35, 51, 67, 83, 99, // 4, 20, 36, 52, 68, 84, 100, // 5, 21, 37, 53, 69, 85, 101, // 6, 22, 38, 54, 70, 86, 102, // 7, 23, 39, 55, 71, 87, 103, // 8, 24, 40, 56, 72, 88, 104, // 9, 25, 41, 57, 73, 89, 105, // 10, 26, 42, 58, 74, 90, 106, // 11, 27, 43, 59, 75, 91, 107, // 12, 28, 44, 60, 76, 92, 108, // 13, 29, 45, 61, 77, 93, 109, // 14, 30, 46, 62, 78, 94, 110, // 15, 31, 47, 63, 79, 95, 111 // bit interleaver for (i = 0, k = 0; i < (FEC_K * 2); i++) { unsigned int bit_num; const uint8_t b = data8[i]; for (bit_num = 0; bit_num < 8; bit_num++) { interleaved[k] = (b >> bit_num) & 1u; k += 16; if (k >= sizeof(interleaved)) k -= sizeof(interleaved) - 1; } } // copy the interleaved bits back to the data buffer for (i = 0, k = 0; i < (FEC_K * 2); i++) { int bit_num; uint8_t b = 0; for (bit_num = 7; bit_num >= 0; bit_num--) if (interleaved[k++]) b |= 1u << bit_num; data8[i] = b; } } return data8 + (FEC_K * 2); } unsigned int MDC1200_encode_single_packet(void *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id) { unsigned int size; uint16_t crc; uint8_t *p = (uint8_t *)data; memcpy(p, mdc1200_pre_amble, sizeof(mdc1200_pre_amble)); p += sizeof(mdc1200_pre_amble); memcpy(p, mdc1200_sync, sizeof(mdc1200_sync)); p += sizeof(mdc1200_sync); p[0] = op; p[1] = arg; p[2] = (unit_id >> 8) & 0x00ff; p[3] = (unit_id >> 0) & 0x00ff; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // unknown field (00 for PTTIDs, 76 for STS and MSG) p = encode_data(p); size = (unsigned int)(p - (uint8_t *)data); /* #if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG) { unsigned int i; const uint8_t *data8 = (const uint8_t *)data; UART_printf("mdc1200 tx2 %u ", size); for (i = 0; i < size; i++) UART_printf(" %02X", data8[i]); UART_SendText("\r\n"); } #endif */ xor_modulation(data, size); return size; } /* unsigned int MDC1200_encode_double_packet(void *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id, const uint8_t b0, const uint8_t b1, const uint8_t b2, const uint8_t b3) { unsigned int size; uint16_t crc; uint8_t *p = (uint8_t *)data; memcpy(p, mdc1200_pre_amble, sizeof(mdc1200_pre_amble)); p += sizeof(mdc1200_pre_amble); memcpy(p, mdc1200_sync, sizeof(mdc1200_sync)); p += sizeof(mdc1200_sync); p[0] = op; p[1] = arg; p[2] = (unit_id >> 8) & 0x00ff; p[3] = (unit_id >> 0) & 0x00ff; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // status byte p = encode_data(p); p[0] = b0; p[1] = b1; p[2] = b2; p[3] = b3; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // status byte p = encode_data(p); size = (unsigned int)(p - (uint8_t *)data); xor_modulation(data, size); return size; } */ // ********************************************************** // RX struct { uint8_t bit; uint8_t prev_bit; uint8_t xor_bit; uint64_t shift_reg; unsigned int bit_count; unsigned int stage; bool inverted_sync; unsigned int data_index; uint8_t data[40]; } rx; void MDC1200_reset_rx(void) { memset(&rx, 0, sizeof(rx)); } bool MDC1200_process_rx( const void *buffer, const unsigned int size, //const bool inverted, uint8_t *op, uint8_t *arg, uint16_t *unit_id) { const uint8_t *buffer8 = (const uint8_t *)buffer; unsigned int index; memset(&rx, 0, sizeof(rx)); for (index = 0; index < size; index++) { unsigned int i; int bit; const uint8_t rx_byte = buffer8[index]; for (bit = 7; bit >= 0; bit--) { rx.prev_bit = rx.bit; rx.bit = (rx_byte >> bit) & 1u; if (rx.stage == 0) { // scanning for the pre-amble rx.xor_bit = rx.bit & 1u; } else { rx.xor_bit = (rx.xor_bit ^ rx.bit) & 1u; if (rx.inverted_sync) rx.xor_bit ^= 1u; } rx.shift_reg = (rx.shift_reg << 1) | (rx.xor_bit & 1u); rx.bit_count++; // ********* if (rx.stage == 0) { // looking for pre-amble if (rx.bit_count < 20 || (rx.shift_reg & 0xfffff) != 1u) continue; rx.xor_bit = 1; rx.stage = 1; rx.bit_count = 1; //s.printf("%5u %2u %u pre-amble found", index, rx_bit_count, rx_packet_stage); //Memo1->Lines->Add(s); } if (rx.stage < 2) { //s.printf("%5u %3u %u ", index, rx_bit_count, rx_packet_stage); //for (uint64_t mask = 1ull << ((sizeof(rx_shift_reg) * 8) - 1); mask != 0; mask >>= 1) // s += (rx_shift_reg & mask) ? '#' : '.'; //s += " "; //for (int i = sizeof(rx_shift_reg) - 1; i >= 0; i--) //{ // String s2; // s2.printf(" %02X", (uint8_t)(rx_shift_reg >> (i * 8))); // s += s2; //} //Memo1->Lines->Add(s); } if (rx.stage == 1) { // looking for the 40-bit sync pattern, it follows the 24-bit pre-amble const unsigned int sync_bit_ok_threshold = 32; if (rx.bit_count >= sync_bit_ok_threshold) { // 40-bit sync pattern uint64_t sync_nor = 0x07092a446fu; // normal uint64_t sync_inv = 0xffffffffffu ^ sync_nor; // bit inverted sync_nor ^= rx.shift_reg; sync_inv ^= rx.shift_reg; unsigned int nor_count = 0; unsigned int inv_count = 0; for (i = 40; i > 0; i--, sync_nor >>= 1, sync_inv >>= 1) { nor_count += sync_nor & 1u; inv_count += sync_inv & 1u; } nor_count = 40 - nor_count; inv_count = 40 - inv_count; if (nor_count >= sync_bit_ok_threshold || inv_count >= sync_bit_ok_threshold) { // good enough rx.inverted_sync = (inv_count > nor_count) ? true : false; //String s; //s.printf("%5u %2u %u sync found %s %u bits ", // index, // rx_bit_count, // rx_packet_stage, // rx_inverted_sync ? "inv" : "nor", // rx_inverted_sync ? inv_count : nor_count); //for (int i = 4; i >= 0; i--) //{ // String s2; // uint8_t b = rx_shift_reg >> (8 * i); // if (rx_inverted_sync) // b ^= 0xff; // s2.printf(" %02X", b); // s += s2; //} //Memo1->Lines->Add(s); rx.data_index = 0; rx.bit_count = 0; rx.stage++; } } continue; } // ********* if (rx.stage < 2) continue; if (rx.bit_count < 8) continue; rx.bit_count = 0; // 55 55 55 55 55 55 55 07 09 2A 44 6F 94 9C 22 20 32 A4 1A 37 1E 3A 00 98 2C 84 rx.data[rx.data_index++] = rx.shift_reg & 0xff; // save the last 8 bits if (rx.data_index < (FEC_K * 2)) continue; // s.printf("%5u %3u %u %2u ", index, rx_bit_count, rx_packet_stage, rx_buffer.size()); // for (i = 0; i < rx_data_index; i++) // { // String s2; // const uint8_t b = rx_buffer[i]; // s2.printf(" %02X", b); // s += s2; // } // Memo1->Lines->Add(s); if (!decode_data(rx.data)) { MDC1200_reset_rx(); continue; } // extract the info from the packet *op = rx.data[0]; *arg = rx.data[1]; *unit_id = ((uint16_t)rx.data[3] << 8) | (rx.data[2] << 0); //s.printf("%5u %3u %u %2u decoded ", index, rx_bit_count, rx_packet_stage, rx_buffer.size()); //for (i = 0; i < 14; i++) //{ // String s2; // const uint8_t b = data[i]; // s2.printf(" %02X", b); // s += s2; //} //Memo1->Lines->Add(s); // reset the detector MDC1200_reset_rx(); return true; } } return false; } // ********************************************************** /* void test(void) { uint8_t data[42]; const int size = MDC1200_encode_single_packet(data, 0x12, 0x34, 0x5678); // const int size = MDC1200_encode_double_packet(data, 0x55, 0x34, 0x5678, 0x0a, 0x0b, 0x0c, 0x0d); } */ void mdc1200_init(void) { memcpy(mdc1200_sync_suc_xor, mdc1200_sync, sizeof(mdc1200_sync)); xor_modulation(mdc1200_sync_suc_xor, sizeof(mdc1200_sync_suc_xor)); }