arm CMSIS

Review meeting at embedded world 2020

Tuesday, 25 February 2020

© 2020 Arm Limited

- CMSIS Overview
- CMSIS-Zone for system configuration (Multi-core, TrustZone, MPU)
- New IP support for Cortex-M55 and improvements for DSP and Machine Learning
- An open approach for IoT on Cortex-M using software components
- CMSIS-Driver WiFi and validation tests
- CMSIS and PSA / TF-M Security Foundation for Cortex-M TrustZone
- CMSIS-Build Productivity for complex software templates
- Summary, Actions, Roadmap

Consistent software framework for Arm Cortex-M and Cortex-A5/A7/A9 based systems

+ + + + + + + + + + + + + + + +

CMSIS-Zone

+ + + + + + + + + + + + + +

* * * * Configure multi-core, TrustZone and MPU

CMSIS-Zone: Device Hardware Configuration

Supports multi-processor systems, TrustZone, and MPU setup

Partition a multi-processor system into single processor views Setup memory and peripherals for secure/non-secure environment Generate consistent configuration

- Setup for the Armv8-M TrustZone (SAU, Interrupt assignment to Secure/Non-Secure)
- Setup of device specific Memory Protection Controller (MPC)
- Setup of device specific Peripheral Protection Controller (PPC)
- Generate related linker configuration to ensure consistency

Solves the alignment requirements for MPU on Armv7-M

• MPU descriptors are optimized and located with alignment requirements

→ Learn more about device configuration with CMSIS-Zone

CMSIS-Zone – Development Workflow

Configuration and build management for system resources

- Resource *.rzone file lists all available systems resources.
 - Assignment *.azone file contains partitioning information and is managed by CMSIS-Zone tool
- CMSIS-Zone tool generates sub-system resource files

CMSIS-Zone – Development Workflow

Multi-step approach shows only relevant sub-system

- It is possible to break down complexity of a system in multiple steps.
- Sub-systems expose only the part of the system that is relevant for the user.
- A sub-system user has no visibility to other parts of the system (as it typically configures also the related access protection).

Configuration Steps

Example

Step 1: split the multi-processor system into single processor sub-system

Configuration Steps

Example

Step 1: split the multi-processor system into single processor sub-systems

Step 2: create the partitions for secure and non-secure execution

© 2020 Arm Limited

New Arm IP Support Cortex-M55

+ + + + + + + + + + + + + +

* * * * * * * * * * * * * * *

Software Support for latest Arm IP

.

Cortex-M processor portfolio covered by CMSIS

Relative ML and signal processing performance

11 © 2020 Arm Limited

**Based on Arm data

Key Algorithms for Signal Processing and ML

Armv8.1-M and Helium technology

The key algorithms for signal processing and ML are:

- **Complex dot-product** (convolution, correlators).
- Fast Fourier Transform (feature extraction, beamformer)
- Neural-Networks (matrix multiplications with bytes)
- Biquad filter (equalizers, noise filtering)

Armv8.1-M architecture is optimized for those algorithms. With **performance boost** from 3 to 17 compared to M4, from 2 to 8 compared to M7.

CMSIS-DSP is fully ported to SIMD for Cortex-M family (Armv8.1-M) and Cortex-A with NEON, using the same APIs.

Plans

Preserve your R&D investments

CMSIS DSP/ML kernels :

- Grow the number of DSP/ML kernels, with **software portability** in mind: preserve your software R&D investments along any processor of the Arm portfolio
- Add important DSP kernels (fp64, fp16, math, 2D, logical, sorting, Kalman, interpolation)
- Invite a wider range of developers to contribute thanks to a **data-flow framework**
- **Classical-ML kernels** for constrained embedded markets :

SVM, Tree, PCA, mean/variance gaussian normalization, clustering by K-Means / LBG ...

CIM An open approach for IoT on Cortex-M

+ + + + + + + + + + + + + +

Create IoT Applications with ready-to-use software components

IoT devices are different – how can we deploy IoT software stacks efficiently at scale?

An open approach for IoT on Cortex-M

Simplified view to the software building blocks for IoT endpoints

- **Device / Board HAL:** abstraction of processor and peripherals with hardware specific configuration
- **RTOS**: thread and resource management
- Secure Network Interface: encrypted internet connection using different interfaces (Ethernet, WiFi, ...)
- **Cloud Connector:** protocol interface to cloud provider
- User Application: bespoke functionality of endpoints

Security running on Secure Processing Environment:

• Crypto services and device identity

Combining various software building blocks effectively is enabled by the CMSIS-Pack system.

CMSIS-Pack: What is a software component?

XML framed information used by project management utilities from various tools

Software components should have:

- Version and history information
- License information
- API interface definition
- Documentation
- Source files
- Configuration files (optional)
- Requirements to other components (optional)

<u>CMSIS-Pack framed software</u> is supported by:

- Mainstream IDEs: Arm DS, Keil MDK, IAR EWARM
- Silicon vendor tools: ADI, OnSemi, STCubeMX
- Several web portals
- Open-source and command-line build tools

CMSIS-Pack: Central API Interface definition

Ensuring consistent interfaces across standard components

Interfaces

A common problem: API headers evolve over time.

- A central API definition shares header file and documentation of an API interface across multiple other software components to ensure consistency.
- The <u>API interface</u> is distributed separate or as part of the software component that defines this interface. The API header file is therefore consistent.
- An example is the <u>CMSIS-Driver pack</u> that contains various Flash, Ethernet and WiFi drivers – all compatible with the CMSIS-Driver APIs that are published in the CMSIS Pack.

 \rightarrow Learn how to create scalable software

Secure Network Interface – implementation choices

IoT devices need flexibility for implementing connectivity on Cortex-M

Available Cloud Connectors:

Azure

Google Cloud Platform

arm PELION

Mbed Crypto implements security

IoT Socket connects to networks with:

- CMSIS-Driver for WiFi implemented with various chipsets
- MDK-Middleware IP networking stack (wired or WiFi)
- LwIP open-source IP communication with wired Ethernet

+ + + + + + + + + + + + + + + +

CMSIS-Driver

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

Generic Peripheral Interfaces

• • • • • • • • • • • • • • • • • •

© 2020 Arm Limited

+ + + +

+ + +

CMSIS-Driver + Validation

- Documentation:
 - Driver: https://arm-software.github.io/CMSIS_5/Driver/html/index.html
 - Validation: https://arm-software.github.io/CMSIS_5/Driver/html/driverValidation.html
- Packs (<u>https://developer.arm.com/embedded/cmsis/cmsis-packs</u>)
 - Driver: ARM:CMSIS Drivers for external devices (various WiFi, Ethernet PHY, etc.)
 - Driver: MDK-Packs: CMSIS WiFi Driver for Qualcomm QCA4002/4 based WiFi module
 - Driver validation: ARM:CMSIS-Driver_Validation

→ Learn about WiFi drivers and WiFi validation

+ + + + + + + + + + + + + +

CMSIS and PSA / TF-M

+ + + + + + + + + + + +

* * * * * * * * * * * * * * *

Security Foundation for Cortex-M TrustZone

 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·</t

Platform Security Architecture

A complete security offering – openly published. Independently tested.

TF-M framed as CMSIS-Pack – focus on Armv8-M

Published at http://github.com/arm-software/CMSIS-TFM

| 📱 Manage Run-Time Environment | | | | | |
|-------------------------------|----------|-------------|-----------|--|----|
| Software Component | Sel. | Variant | Version | Description | _ |
| 🚊 🚸 Security | | | | Encryption for secure communication or storage | |
| mbed Crypto | ~ | | 1.1.0 | ARM mbed Cryptographic library | |
| mbed TLS | | | 2.17.0 | ARM mbed Cryptographic and SSL/TLS library | |
| 🖶 💠 TFM | | | | Trusted Firmware-M (TF-M) | |
| Bootloader | | | 1.0.0 | TF-M Bootloader (MCUBoot) | _ |
| Core | ~ | SFN ~ | 1.0.0 | TF-M Secure Core (Secure Functions) | _ |
| 🖽 💠 Library | | | | | _ |
| 🖃 💠 Secure Service | | | | | _ |
| Audit Logging | | | 1.0.0 | TF-M Audit Logging Service | |
| Crypto | ~ | | 1.0.0 | TF-M Crypto Secure Service | |
| Initial Attestation | | | 1.0.0 | TF-M Initial Attestation Service | |
| Internal Trusted Storage | ~ | | 1.0.0 | TF-M Internal Trusted Storage Service | |
| Platform | | | 1.0.0 | TF-M Platform Service | |
| Secure Storage | | Encrypted 🗸 | 1.0.0 | TF-M Encrypted Secure Storage Service | |
| 🗈 💠 Test | | | | | |
| 🖅 💠 Test Service | | | | | |
| 😑 💠 TFM Platform | | | | Trusted Firmware-M (TF-M) Platform | |
| Memory Map | v | | 1.0.0 | TF-M Platform Memory Map for ST STM32L5 | |
| 🕀 💠 Attest HAL (API) | | | 1.0.0 | TF-M Platform Attest HAL | |
| 🗄 💠 Boot HAL (API) | | | 1.0.0 | TF-M Platform Boot HAL | |
| 🖶 🚸 Boot Seed (API) | | | 1.0.0 | TF-M Platform Boot Seed | |
| 🕀 🚸 Crypto Keys (API) | | | 1.0.0 | TF-M Platform Crypto Keys | |
| 🗈 🚸 Device ID (API) | | | 1.0.0 | TF-M Platform Device ID | |
| 😥 🚸 NV Counters (API) | | | 1.0.0 | TF-M Platform NV Counters | |
| 🗈 🚸 SPM HAL (API) | | | 1.0.0 | TF-M Platform SPM HAL | |
| 🗉 🚸 System (API) | | | 1.0.0 | TF-M Platform System | |
| 🖽 🚸 Test (API) | | | 1.0.0 | TF-M Platform Test | |
| 🗄 🚸 USB | | MDK-Plus 🗸 | 6.13.7 | USB Communication with various device classes | • |
| | | | · · · · · | | ΞĒ |

- Beta availability: 16. March 2020
- Pack Structure:
 - **TFM** Trusted Firmware-M reference implementation (contains both: secure + non-secure parts)

TFM-Platform – device specific support

- TFM_Platform_LPC55S6x
- TFM_Platform_STM32L5
- •

TFM Pack is synchronized with https://trustedfirmware.org/

Changes will be upstreamed

TFM CMSIS Pack – optimize for efficiency on Armv8-M

Working with trustedfirmware.org team on overall simplification

- No special requirements on RTOS (no TZ context management)
- Prefer static configuration vs. dynamic runtime configuration
- Secure Function (SFN) calls instead of IPC
 - Simplify MPU handling for isolation level 2 / 3
- Reduce overall memory footprint
- Support for device-specific boot loaders
- Event annotations instead of printf diagnostics
- Interrupt behavior under review (avoid ISR lock-out by carefully choosing SVC handler mode priority)

TFM CMSIS Pack – Security setup with CMSIS-Zone

Define TF-M memory regions and peripheral access rights in three steps:

| | Permis
rx,n | 1 | Start | End | | | | |
|-----------------------------|------------------|---------------|------------|------------|---------|--------|------------------------------------|---|
| ✓ Image Memory ✓ ✓ Flash_NS | | Size | Start | | Afren a | +6 | lafa | Memory regions for TFM |
| ✓ ♀ Flash_NS | rx,n | | | LIIG | tfm_s | tfm_ns | INIS | , 8 |
| | rx,n | 540 WD | | 0.000 | | | | Peripheral access rights |
| V CODE_NS | | 512 KB | | 0x000/FFFF | | | New York FLASH (*** CODE ****** | |
| A Flack C | rx,n | 192 KB | | 0x0806FFFF | | | Non-secure FLASH for CODE executi | |
| | rx,c | 512 KB | | 0x0C07FFFF | | | Server FLASH for CODE and then | 2 Calact reservings upper fam. |
| | rx,s | 261376 | | 0x0C03FCFF | | | Secure FLASH for CODE execution | 2. Select resource usage for: |
| | rx,c | 768 B | | 0x0C03FFFF | | | Non-secure callable ELASH for CODE | |
| | rx,s | 20 KB | | 0x0C074FFF | | | Secure Storage Area | tfm s (secure side) |
| | rx,s | 16 KB
4 KB | | 0x0C078FFF | | | Internal Trusted Storage Area | |
| _ | NV_COUNTERS rx,s | | | 0x0C07FFFF | | | Non-volatile Counters | tfm ns (non-secure side) |
| - | rwx,n | 256 KB | | 0x2003FFFF | _ | | | |
| | rw,n | 128 KB | | 0x2003FFFF | | | Non-secure RAM for DATA section | |
| | rwx,c | | | | | | 0 DA146 DATA | |
| _ | rw,s | 128 KB | 0x30000000 | 0x3001FFFF | | | Secure RAM for DATA section | 3. Generate setup files: |
| Peripherals | | | | | | | | |
| > 💸 ADC | | | | | | | D: | partition gen.h (SAU / ISR assignment |
| > 💸 DMA | | | | | | | Direct memory access controller | |
| V 💸 GPIO | | | | | | | General-purpose I/O Ports | mem layout.h |
| • | rw | 1 KB | | 0x420203FF | | | Port A | |
| | rw | | 0x42020400 | | | | Port B | SystemIsolation Config.c |
| | nd all Selec | ted | | 0x42020BFF | | | Port C | , 0 |
| 🔶 GPIOD 🕞 Expan | nd All | | | 0x42020FFF | | | Port D | (MPC, PPC, security config) |
| GPIOE Colla | apse All | | | 0x420213FF | | | Port E | |
| GPIOF | | | | 0x420217FF | _ | | Port F | |
| | figure Pins | | | 0x42021BFF | | | Port G | |
| GPIOH Prop | perties | | 0x42021C00 | 0x42021FFF | | | Port H | arm |
| > 🐼 I2C 📃 Prop
> 🐼 LPTIM | | | | | | | | |

CIM An open approach for IoT on Cortex-M

+ + + + + + + + + + + + + +

*** Demo^{*}**

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + +

An open approach for IoT on Cortex-M

- Arm takes a holistic view to the development cycle of IoT endpoint devices
- CMSIS provides the software interface standard for interoperability of software components

<u>www.arm.com/psa</u> - Platform Security Architecture to ensure ground up security in devices <u>www.keil.com/iot</u> - Get started with cloud connectors on microcontrollers

Hall4 - Stand 360 IoT Security with TrustZone and TF-M on STM32L5

+ + + + + + + + + + + + + +

CMSIS-Build

+ + + + +

+ + + + +

.

.

Productivity for complex software templates:

- 1. Software Layers for efficient code re-use
- 2. Generic project format
- 3. Continuous Integration (CI) workflow
- 4. Virtual I/O for fast migration from eval to production

© 2020 Arm Limited

1. Software layers group pre-configured software components

IoT for Cortex-M – move from eval kit to custom hardware; scale examples to many boards

2. CMSIS – Generic Project Description (*.cprj) Format

Migrate projects to different IDE; facilitate construction of projects from software layers

Describes everything required for project build:

- CMSIS-Packs used by project for the selected software component
- Compiler toolchain including version (range) and essential command line options
- Hardware target information including device vendor, device name, enabled device features
- Software component selection and configuration file information.
- RTE folder containing preconfigured component configuration files.
- Project specific source code files

Export import to MDK and Eclipse CMSIS-Pack (basis for Arm DS, IAR EW-ARM, etc.)

• MDK release: April 2020, Eclipse CMSIS-Pack release: July 2020

<u>Command-line tools</u> for standard Make builds with *.cprj based projects

- Supports automatic Software Pack upgrades including <u>ccmerge: Config File Updater</u>
- Construct projects from different software layers using the <u>cbuildgen: Build Process Manager</u>
- Version 1.0.0: Beta: April 2020, Release: July 2020

3. Continuous Integration (CI) workflow

IDE and CI development combined delivers better tested products faster

4. Virtual I/O provides generic API for examples and testing

IoT for Cortex-M – move from eval kit to custom hardware; scale examples to many boards

Program examples help users to understand software faster, but are difficult to scale to many hundred evaluation kits.

CMSIS-VIO solves that problem with:

- Consistent, simple interfaces to demo I/O peripherals
- Software simulation for peripherals that are not available

Program examples are a great start for application programs, but demo I/O is not available in production hardware:

CMSIS-VIO solves that problem with:

#defines that disconnect the demo I/O

Program examples and application programs needs testing:

CMSIS-VIO solves that problem with:

• Variables accessible by test systems to control application

+ + + + + + + + + + + + + +

Summary and Actions

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

Collaborate with us

| CMSIS timeline | Description | How you can contribute | | | | | | | |
|-----------------------|---|---|--|--|--|--|--|--|--|
| Available
already | WiFi driver implementations and
IoT Connector implementations | WiFi chip set vendor: <u>add your own driver</u>
Compiler vendor: <u>adopt projects to your toolchain</u> | | | | | | | |
| March 2020 | TFM beta release framed as
CMSIS-Pack with adoption
instructions to Cortex-M23/M33
devices (to create a platform) | Review live repository on
<u>https://github.com/arm-software/CMSIS-TFM</u>
For compiler vendors, help us to make it
compatible with your toolchain | | | | | | | |
| April 2020 | CMSIS v5.7.0 release with:
- Core(M): Cortex-M55
- enhanced DSP + ML libraries
- CMSIS-Build (beta) | Review live repository on
<u>https://github.com/arm-software/cmsis_5</u>
Use ' <u>lssues</u> ' to report problems or raise requests | | | | | | | |
| May 2020 | enhanced DSP + ML libraries CMSIS-Build (beta) MSIS-Zone v1.1 with enhancements
nd MPU compression for v7M | For chip vendors: <u>add *.rzone files</u> for devices to <u>https://github.com/arm-software/cmsis-zone</u> | | | | | | | |
| May / June
2020 | Tutorials for IoT connectivity with
TrustZone enabled devices | Tbd | | | | | | | |
| Outlook | CMSIS-Build: final release and examples for the software layer concept
CMSIS-DAP: Tooling for CMSIS-VIO control and Secure Debug
CMSIS-Pack/SVD: better integration of CMSIS-Zone *.rzone files | | | | | | | | |

Consistent software framework for Arm Cortex-M and Cortex-A5/A7/A9 based systems

Benefits for the software developer Unified software interfaces Reduced learning effort RTOS-agnostic middleware Project and code templates Consistent APIs for device peripherals Software deployment and PLM

CMSIS supports the complete development flow (from eval to production) and system optimization

Easy evaluation with program examples for evaluation kits

Fast development with ready-to-use software components and templates Reliable systems with FuSa certified software components IoT devices are different – how can we deploy IoT software stacks efficiently at scale?

| Thank You | | | | | \mathbf{n}^{+} | rn | C | |
|----------------------|--|--|--|--|------------------|----|---|--|
| , Danke | | | | | | | + | |
| Merci | | | | | | | | |
| + + 谢谢 | | | | | | | | |
| ありがとう | | | | | | | | |
| [•] Gracias | | | | | | | | |
| . Kiitos | | | | | | | | |
| 감사합니다 | | | | | | | | |
| धन्यवाद | | | | | | | | |
| شکرًا | | | | | | | | |
| תודה | | | | | | | | |

| | | | | | | | F |
|--|--|--|--|--|--|--|---|
| | | | | | | | |

| arm | | | ⁺ The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners. |
|-----|--|--|---|
| | | | |

www.arm.com/company/policies/trademarks