0
mirror of https://github.com/OneOfEleven/uv-k5-firmware-custom.git synced 2025-04-27 22:01:26 +03:00
2023-11-02 10:00:51 +00:00

636 lines
14 KiB
C

/* Copyright 2023 Dual Tachyon
* https://github.com/DualTachyon
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define INCLUDE_AES
#if !defined(ENABLE_OVERLAY)
#include "ARMCM0.h"
#endif
#ifdef ENABLE_FMRADIO
#include "app/fm.h"
#endif
#include "app/uart.h"
#include "board.h"
#include "bsp/dp32g030/dma.h"
#include "bsp/dp32g030/gpio.h"
#include "driver/aes.h"
#include "driver/bk4819.h"
#include "driver/crc.h"
#include "driver/eeprom.h"
#include "driver/gpio.h"
#if defined(ENABLE_UART)
#include "driver/uart.h"
#endif
#include "functions.h"
#include "misc.h"
#include "settings.h"
#if defined(ENABLE_OVERLAY)
#include "sram-overlay.h"
#endif
#include "version.h"
#include "ui/ui.h"
#define DMA_INDEX(x, y) (((x) + (y)) % sizeof(UART_DMA_Buffer))
#define EEPROM_SIZE 0x2000u // 8192 .. BL24C64 I2C eeprom chip
// ****************************************************
typedef struct {
uint16_t ID;
uint16_t Size;
} __attribute__((packed)) Header_t;
typedef struct {
uint8_t pad[2];
uint16_t ID;
} __attribute__((packed)) Footer_t;
typedef struct {
Header_t Header;
uint32_t time_stamp;
} __attribute__((packed)) cmd_0514_t;
// version
typedef struct {
Header_t Header;
struct {
char Version[16];
uint8_t has_custom_aes_key;
uint8_t password_locked;
uint8_t pad[2];
uint32_t Challenge[4];
} __attribute__((packed)) Data;
} __attribute__((packed)) reply_0514_t;
typedef struct {
Header_t Header;
uint16_t Offset;
uint8_t Size;
uint8_t pad;
uint32_t time_stamp;
} __attribute__((packed)) cmd_051B_t;
typedef struct {
Header_t Header;
struct {
uint16_t Offset;
uint8_t Size;
uint8_t pad;
uint8_t Data[128];
} __attribute__((packed)) Data;
} __attribute__((packed)) reply_051B_t;
typedef struct {
Header_t Header;
uint16_t Offset;
uint8_t Size;
uint8_t allow_password;
uint32_t time_stamp;
// uint8_t Data[0]; // new compiler strict warning settings doesn't allow zero-length arrays
} __attribute__((packed)) cmd_051D_t;
typedef struct {
Header_t Header;
struct {
uint16_t Offset;
} __attribute__((packed)) Data;
} __attribute__((packed)) reply_051D_t;
typedef struct {
Header_t Header;
struct {
uint16_t RSSI;
uint8_t ExNoiseIndicator;
uint8_t GlitchIndicator;
} __attribute__((packed)) Data;
} __attribute__((packed)) reply_0527_t;
typedef struct {
Header_t Header;
struct {
uint16_t Voltage;
uint16_t Current;
} __attribute__((packed)) Data;
} __attribute__((packed)) reply_0529_t;
typedef struct {
Header_t Header;
uint32_t Response[4];
} __attribute__((packed)) cmd_052D_t;
typedef struct {
Header_t Header;
struct {
uint8_t locked;
uint8_t pad[3];
} __attribute__((packed)) Data;
} __attribute__((packed)) reply_052D_t;
typedef struct {
Header_t Header;
uint32_t time_stamp;
} __attribute__((packed)) cmd_052F_t;
static union
{
uint8_t Buffer[256];
struct
{
Header_t Header;
uint8_t Data[252];
} __attribute__((packed));
} __attribute__((packed)) UART_Command;
uint32_t time_stamp = 0;
uint16_t write_index = 0;
bool is_encrypted = true;
#ifdef INCLUDE_AES
uint8_t is_locked = (uint8_t)true;
uint8_t try_count = 0;
#endif
// ****************************************************
static void SendReply(void *preply, uint16_t Size)
{
Header_t Header;
Footer_t Footer;
if (is_encrypted)
{
uint8_t *pBytes = (uint8_t *)preply;
unsigned int i;
for (i = 0; i < Size; i++)
pBytes[i] ^= obfuscate_array[i % 16];
}
Header.ID = 0xCDAB;
Header.Size = Size;
UART_Send(&Header, sizeof(Header));
UART_Send(preply, Size);
if (is_encrypted)
{
Footer.pad[0] = obfuscate_array[(Size + 0) % 16] ^ 0xFF;
Footer.pad[1] = obfuscate_array[(Size + 1) % 16] ^ 0xFF;
}
else
{
Footer.pad[0] = 0xFF;
Footer.pad[1] = 0xFF;
}
Footer.ID = 0xBADC;
UART_Send(&Footer, sizeof(Footer));
}
static void SendVersion(void)
{
reply_0514_t reply;
unsigned int slen = strlen(Version_str);
if (slen > (sizeof(reply.Data.Version) - 1))
slen = sizeof(reply.Data.Version) - 1;
memset(&reply, 0, sizeof(reply));
reply.Header.ID = 0x0515;
reply.Header.Size = sizeof(reply.Data);
memcpy(reply.Data.Version, Version_str, slen);
reply.Data.has_custom_aes_key = g_has_aes_key;
reply.Data.password_locked = g_password_locked;
reply.Data.Challenge[0] = g_challenge[0];
reply.Data.Challenge[1] = g_challenge[1];
reply.Data.Challenge[2] = g_challenge[2];
reply.Data.Challenge[3] = g_challenge[3];
SendReply(&reply, sizeof(reply));
}
#ifdef INCLUDE_AES
static bool IsBadChallenge(const uint32_t *pKey, const uint32_t *pIn, const uint32_t *pResponse)
{
unsigned int i;
uint32_t IV[4] = {0, 0, 0, 0};
AES_Encrypt(pKey, IV, pIn, IV, true);
for (i = 0; i < 4; i++)
if (IV[i] != pResponse[i])
return true;
return false;
}
#endif
// version
static void cmd_0514(const uint8_t *pBuffer)
{
const cmd_0514_t *pCmd = (const cmd_0514_t *)pBuffer;
time_stamp = pCmd->time_stamp;
g_serial_config_tick_500ms = serial_config_tick_500ms;
// show message
g_request_display_screen = DISPLAY_MAIN;
g_update_display = true;
SendVersion();
}
// read eeprom
static void cmd_051B(const uint8_t *pBuffer)
{
const cmd_051B_t *pCmd = (const cmd_051B_t *)pBuffer;
unsigned int addr = pCmd->Offset;
unsigned int size = pCmd->Size;
// bool locked = false;
reply_051B_t reply;
// if (pCmd->time_stamp != time_stamp)
// return;
g_serial_config_tick_500ms = serial_config_tick_500ms;
if (addr >= EEPROM_SIZE)
return;
if (size > sizeof(reply.Data.Data))
size = sizeof(reply.Data.Data);
if (size > (EEPROM_SIZE - addr))
size = EEPROM_SIZE - addr;
if (size == 0)
return;
memset(&reply, 0, sizeof(reply));
reply.Header.ID = 0x051C;
reply.Header.Size = size + 4;
reply.Data.Offset = addr;
reply.Data.Size = size;
// if (g_has_aes_key)
// locked = is_locked;
// if (!locked)
// EEPROM_ReadBuffer(addr, reply.Data.Data, size);
memcpy(reply.Data.Data, ((uint8_t *)&g_eeprom) + addr, size);
SendReply(&reply, size + 8);
}
// write eeprom
static void cmd_051D(const uint8_t *pBuffer)
{
const unsigned int write_size = 8;
const cmd_051D_t *pCmd = (const cmd_051D_t *)pBuffer;
const unsigned int addr = pCmd->Offset;
unsigned int size = pCmd->Size;
#ifdef INCLUDE_AES
bool reload_eeprom = false;
bool locked = g_has_aes_key ? is_locked : g_has_aes_key;
#endif
reply_051D_t reply;
// if (pCmd->time_stamp != time_stamp)
// return;
g_serial_config_tick_500ms = serial_config_tick_500ms;
if (addr >= EEPROM_SIZE)
return;
if (size > (EEPROM_SIZE - addr))
size = EEPROM_SIZE - addr;
if (size == 0)
return;
memset(&reply, 0, sizeof(reply));
reply.Header.ID = 0x051E;
reply.Header.Size = size;
reply.Data.Offset = addr;
#ifdef INCLUDE_AES
if (!locked)
#endif
{
unsigned int i;
for (i = 0; i < (size / write_size); i++)
{
const unsigned int k = i * write_size;
const unsigned int Offset = addr + k;
uint8_t *data = (uint8_t *)pCmd + sizeof(cmd_051D_t) + k;
if ((Offset + write_size) > EEPROM_SIZE)
break;
#ifdef INCLUDE_AES
if (Offset >= 0x0F30 && Offset < 0x0F40) // AES key
if (!is_locked)
reload_eeprom = true;
#else
if (Offset == 0x0F30)
memset(data, 0xff, 8); // wipe the AES key
#endif
//#ifndef ENABLE_KILL_REVIVE
if (Offset == 0x0F40)
{ // killed flag is here
data[2] = false; // remove it
}
//#endif
#ifdef ENABLE_PWRON_PASSWORD
if ((Offset < 0x0E98 || Offset >= 0x0E9C) || !g_password_locked || pCmd->allow_password)
EEPROM_WriteBuffer8(Offset, data);
#else
if (Offset == 0x0E98)
memset(data, 0xff, 4); // wipe the password
EEPROM_WriteBuffer8(Offset, data);
#endif
}
#ifdef INCLUDE_AES
if (reload_eeprom)
SETTINGS_read_eeprom();
#endif
}
SendReply(&reply, sizeof(reply));
}
// read RSSI
static void cmd_0527(void)
{
reply_0527_t reply;
memset(&reply, 0, sizeof(reply));
reply.Header.ID = 0x0528;
reply.Header.Size = sizeof(reply.Data);
reply.Data.RSSI = BK4819_ReadRegister(0x67) & 0x01FF;
reply.Data.ExNoiseIndicator = BK4819_ReadRegister(0x65) & 0x007F;
reply.Data.GlitchIndicator = BK4819_ReadRegister(0x63);
SendReply(&reply, sizeof(reply));
}
// read ADC
static void cmd_0529(void)
{
uint16_t voltage;
uint16_t current;
reply_0529_t reply;
memset(&reply, 0, sizeof(reply));
reply.Header.ID = 0x52A;
reply.Header.Size = sizeof(reply.Data);
// Original doesn't actually send current!
BOARD_ADC_GetBatteryInfo(&voltage, &current);
reply.Data.Voltage = voltage;
reply.Data.Current = current;
SendReply(&reply, sizeof(reply));
}
#ifdef INCLUDE_AES
static void cmd_052D(const uint8_t *pBuffer)
{
cmd_052D_t *pCmd = (cmd_052D_t *)pBuffer;
bool locked = g_has_aes_key;
uint32_t response[4];
reply_052D_t reply;
g_serial_config_tick_500ms = serial_config_tick_500ms;
if (!locked)
{
uint32_t aes_key[4];
memcpy((void *)&response, &pCmd->Response, sizeof(response)); // overcome strict compiler warning settings
memcpy(aes_key, g_eeprom.config.setting.aes_key, sizeof(aes_key));
locked = IsBadChallenge(aes_key, g_challenge, response);
}
if (!locked)
{
memcpy((void *)&response, &pCmd->Response, sizeof(response)); // overcome strict compiler warning settings
locked = IsBadChallenge(g_default_aes_key, g_challenge, response);
if (locked)
try_count++;
}
if (try_count < 3)
{
if (!locked)
try_count = 0;
}
else
{
try_count = 3;
locked = true;
}
is_locked = locked;
memset(&reply, 0, sizeof(reply));
reply.Header.ID = 0x052E;
reply.Header.Size = sizeof(reply.Data);
reply.Data.locked = is_locked;
SendReply(&reply, sizeof(reply));
}
#endif
static void cmd_052F(const uint8_t *pBuffer)
{
const cmd_052F_t *pCmd = (const cmd_052F_t *)pBuffer;
g_rx_vfo = 0;
g_eeprom.config.setting.dual_watch = DUAL_WATCH_OFF;
g_eeprom.config.setting.cross_vfo = CROSS_BAND_OFF;
g_eeprom.config.setting.dtmf.side_tone = false;
g_vfo_info[0].frequency_reverse = false;
g_vfo_info[0].p_rx = &g_vfo_info[0].freq_config_rx;
g_vfo_info[0].p_tx = &g_vfo_info[0].freq_config_tx;
g_vfo_info[0].tx_offset_freq_dir = TX_OFFSET_FREQ_DIR_OFF;
g_vfo_info[0].dtmf_ptt_id_tx_mode = PTT_ID_OFF;
g_vfo_info[0].dtmf_decoding_enable = false;
g_serial_config_tick_500ms = serial_config_tick_500ms;
#ifdef ENABLE_NOAA
g_noaa_mode = false;
#endif
if (g_current_function == FUNCTION_POWER_SAVE)
FUNCTION_Select(FUNCTION_FOREGROUND);
time_stamp = pCmd->time_stamp;
// show message
g_request_display_screen = DISPLAY_MAIN;
g_update_display = true;
SendVersion();
}
bool UART_IsCommandAvailable(void)
{
uint16_t Index;
uint16_t TailIndex;
uint16_t Size;
uint16_t CRC;
uint16_t CommandLength;
uint16_t DmaLength = DMA_CH0->ST & 0xFFFU;
while (1)
{
if (write_index == DmaLength)
return false;
while (write_index != DmaLength && UART_DMA_Buffer[write_index] != 0xABU)
write_index = DMA_INDEX(write_index, 1);
if (write_index == DmaLength)
return false;
if (write_index < DmaLength)
CommandLength = DmaLength - write_index;
else
CommandLength = (DmaLength + sizeof(UART_DMA_Buffer)) - write_index;
if (CommandLength < 8)
return 0;
if (UART_DMA_Buffer[DMA_INDEX(write_index, 1)] == 0xCD)
break;
write_index = DMA_INDEX(write_index, 1);
}
Index = DMA_INDEX(write_index, 2);
Size = (UART_DMA_Buffer[DMA_INDEX(Index, 1)] << 8) | UART_DMA_Buffer[Index];
if ((Size + 8u) > sizeof(UART_DMA_Buffer))
{
write_index = DmaLength;
return false;
}
if (CommandLength < (Size + 8))
return false;
Index = DMA_INDEX(Index, 2);
TailIndex = DMA_INDEX(Index, Size + 2);
if (UART_DMA_Buffer[TailIndex] != 0xDC || UART_DMA_Buffer[DMA_INDEX(TailIndex, 1)] != 0xBA)
{
write_index = DmaLength;
return false;
}
if (TailIndex < Index)
{
const uint16_t ChunkSize = sizeof(UART_DMA_Buffer) - Index;
memcpy(UART_Command.Buffer, UART_DMA_Buffer + Index, ChunkSize);
memcpy(UART_Command.Buffer + ChunkSize, UART_DMA_Buffer, TailIndex);
}
else
memcpy(UART_Command.Buffer, UART_DMA_Buffer + Index, TailIndex - Index);
TailIndex = DMA_INDEX(TailIndex, 2);
if (TailIndex < write_index)
{
memset(UART_DMA_Buffer + write_index, 0, sizeof(UART_DMA_Buffer) - write_index);
memset(UART_DMA_Buffer, 0, TailIndex);
}
else
memset(UART_DMA_Buffer + write_index, 0, TailIndex - write_index);
write_index = TailIndex;
if (UART_Command.Header.ID == 0x0514)
is_encrypted = false;
if (UART_Command.Header.ID == 0x6902)
is_encrypted = true;
if (is_encrypted)
{
unsigned int i;
for (i = 0; i < (Size + 2u); i++)
UART_Command.Buffer[i] ^= obfuscate_array[i % 16];
}
CRC = UART_Command.Buffer[Size] | (UART_Command.Buffer[Size + 1] << 8);
return (CRC_Calculate(UART_Command.Buffer, Size) != CRC) ? false : true;
}
void UART_HandleCommand(void)
{
switch (UART_Command.Header.ID)
{
case 0x0514: // version
cmd_0514(UART_Command.Buffer);
break;
case 0x051B: // read eeprom
cmd_051B(UART_Command.Buffer);
break;
case 0x051D: // write eeprom
cmd_051D(UART_Command.Buffer);
break;
case 0x051F: // Not implementing non-authentic command
break;
case 0x0521: // Not implementing non-authentic command
break;
case 0x0527: // read RSSI
cmd_0527();
break;
case 0x0529: // read ADC
cmd_0529();
break;
#ifdef INCLUDE_AES
case 0x052D: //
cmd_052D(UART_Command.Buffer);
break;
#endif
case 0x052F: //
cmd_052F(UART_Command.Buffer);
break;
case 0x05DD: // reboot
#if defined(ENABLE_OVERLAY)
overlay_FLASH_RebootToBootloader();
#else
NVIC_SystemReset();
#endif
break;
}
}