0
mirror of https://github.com/OneOfEleven/uv-k5-firmware-custom.git synced 2025-04-27 22:01:26 +03:00
uv-k5-firmware-custom/frequencies.c
OneOfEleven 56aaf876ef .
2023-11-11 13:09:24 +00:00

352 lines
9.9 KiB
C

/* Copyright 2023 Dual Tachyon
* https://github.com/DualTachyon
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
#include "driver/uart.h"
#endif
#include "frequencies.h"
#include "misc.h"
#include "settings.h"
// the default AIRCOPY frequency
uint32_t g_aircopy_freq = 41002500;
const freq_band_table_t AIR_BAND = {10800000, 13700000};
// the BK4819 has 2 bands it covers, 18MHz ~ 630MHz and 760MHz ~ 1300MHz
const freq_band_table_t BX4819_BAND1 = { 1800000, 63000000};
const freq_band_table_t BX4819_BAND2 = {84000000, 130000000};
const freq_band_table_t FREQ_BAND_TABLE[7] =
{
#ifdef ENABLE_WIDE_RX
// extended range
{BX4819_BAND1.lower, 10800000}, // band 1
{AIR_BAND.lower, AIR_BAND.upper}, // band 2
{AIR_BAND.upper, 17400000}, // band 3
{17400000, 35000000}, // band 4
{35000000, 40000000}, // band 5
{40000000, 47000000}, // band 6
{47000000, BX4819_BAND2.upper} // band 7
#else
// QS original
{ 5000000, 7600000}, // band 1
{AIR_BAND.lower, AIR_BAND.upper}, // band 2
{AIR_BAND.upper, 17400000}, // band 3
{17400000, 35000000}, // band 4
{35000000, 40000000}, // band 5
{40000000, 47000000}, // band 6
{47000000, 60000000} // band 7
#endif
};
#ifdef ENABLE_NOAA
const uint32_t NOAA_FREQUENCY_TABLE[10] =
{
16255000,
16240000,
16247500,
16242500,
16245000,
16250000,
16252500,
16152500,
16177500,
16327500
};
#endif
// the first 7 values MUST remain in those same positions
// so as to remain compatible with the QS config software
//
const uint16_t STEP_FREQ_TABLE[21] = {
250, 500, 625, 1000, 1250, 2500, 833,
1, 5, 10, 25, 50, 100, 125, 1500, 3000, 5000, 10000, 12500, 25000, 50000
};
// the above step sizes will be sorted to appear to be in order to the user
uint16_t step_freq_table_sorted[ARRAY_SIZE(STEP_FREQ_TABLE)];
unsigned int FREQUENCY_get_step_index(const unsigned int step_size)
{ // return the index into 'STEP_FREQ_TABLE' for the supplied step size
unsigned int i;
for (i = 0; i < ARRAY_SIZE(step_freq_table_sorted); i++)
if (STEP_FREQ_TABLE[step_freq_table_sorted[i]] == step_size)
return i;
// not found, so default to 12.5kHz
return 11;
}
void FREQUENCY_init(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(step_freq_table_sorted); i++)
step_freq_table_sorted[i] = i;
// sort according to step size
for (i = 0; i < ARRAY_SIZE(step_freq_table_sorted) - 1; i++)
{
uint16_t step1 = STEP_FREQ_TABLE[step_freq_table_sorted[i]];
unsigned int k;
for (k = i + 1; k < ARRAY_SIZE(step_freq_table_sorted); k++)
{
const uint16_t step2 = STEP_FREQ_TABLE[step_freq_table_sorted[k]];
if (step2 < step1)
{ // swap
const uint16_t temp = step_freq_table_sorted[i];
step_freq_table_sorted[i] = step_freq_table_sorted[k];
step_freq_table_sorted[k] = temp;
step1 = STEP_FREQ_TABLE[step_freq_table_sorted[i]];
}
}
}
/*
#if defined(ENABLE_UART) && defined(ENABLE_UART_DEBUG)
UART_SendText("step ..\r\n");
for (i = 0; i < ARRAY_SIZE(step_freq_table_sorted); i++)
UART_printf("%2u %2u %5u\r\n", i, step_freq_table_sorted[i], STEP_FREQ_TABLE[step_freq_table_sorted[i]]);
UART_SendText("\r\n");
#endif
*/
}
frequency_band_t FREQUENCY_GetBand(uint32_t Frequency)
{
int band;
for (band = ARRAY_SIZE(FREQ_BAND_TABLE) - 1; band >= 0; band--)
if (Frequency >= FREQ_BAND_TABLE[band].lower && Frequency < FREQ_BAND_TABLE[band].upper)
// if (Frequency >= FREQ_BAND_TABLE[band].lower)
return (frequency_band_t)band;
return BAND1_50MHz;
// return BAND_NONE;
}
uint8_t FREQUENCY_CalculateOutputPower(uint8_t TxpLow, uint8_t TxpMid, uint8_t TxpHigh, int32_t LowerLimit, int32_t Middle, int32_t UpperLimit, int32_t Frequency)
{
uint8_t pwr = TxpMid;
if (Frequency <= LowerLimit)
return TxpLow;
if (Frequency >= UpperLimit)
return TxpHigh;
// linear interpolation
if (Frequency <= Middle)
pwr += ((TxpMid - TxpLow) * (Frequency - LowerLimit)) / (Middle - LowerLimit);
else
pwr += ((TxpHigh - TxpMid) * (Frequency - Middle)) / (UpperLimit - Middle);
return pwr;
}
uint32_t FREQUENCY_floor_to_step(uint32_t freq, const uint32_t step_size, const uint32_t lower, const uint32_t upper)
{
uint32_t delta;
if (freq <= lower)
return lower;
if (freq > (upper - 1))
freq = upper - 1;
delta = freq - lower;
if (delta < step_size)
return lower;
if (step_size == 833)
{
uint32_t base = (delta / 2500) * 2500; // 25kHz step
const uint32_t index = ((delta - base) % 2500) / step_size;
if (index >= 2)
base++;
freq = lower + base + (step_size * index);
}
else
freq = lower + ((delta / step_size) * step_size);
return freq;
}
uint32_t FREQUENCY_wrap_to_step_band(uint32_t freq, const uint32_t step_size, const unsigned int band)
{
const uint32_t upper = FREQ_BAND_TABLE[band].upper;
const uint32_t lower = FREQ_BAND_TABLE[band].lower;
if (freq < lower)
return FREQUENCY_floor_to_step(upper, step_size, lower, upper);
if (freq >= upper)
freq = lower;
return freq;
}
#ifdef ENABLE_SCAN_RANGES
const freq_scan_range_table_t FREQ_SCAN_RANGE_TABLE[] =
{
{ 2760125, 2800000, 1000},
{ 2696500, 2785600, 1000},
{ 2600000, 2800000, 1000},
{ 2800000, 2970000, 1000},
{ 5000000, 5200000, 1000},
{ 5000000, 5400000, 1000},
{ 7000000, 7050000, 1250},
{10800000, 11800000, 2500},
// {11800000, 13700000, 833},
{11800000, 13700000, 2500},
{14400000, 14600000, 1250},
{14400000, 14800000, 1250},
{15600000, 15800000, 2500},
{16200000, 17400000, 1250},
{21900000, 22500000, 1500},
{24000000, 39000000, 2500},
{43000000, 44000000, 1250},
{44600625, 44619376, 1250},
{44000000, 47000000, 1250}
};
void FREQUENCY_scan_range(const uint32_t freq, uint32_t *lower, uint32_t *upper, uint32_t *step_size)
{
const frequency_band_t band = FREQUENCY_GetBand(freq);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(FREQ_SCAN_RANGE_TABLE); i++)
{
const uint32_t _upper = FREQ_SCAN_RANGE_TABLE[i].upper;
const uint32_t _lower = FREQ_SCAN_RANGE_TABLE[i].lower;
if (freq >= _lower && freq < _upper)
{
if (upper) *upper = _upper;
if (lower) *lower = _lower;
if (step_size) *step_size = FREQ_SCAN_RANGE_TABLE[i].step_size;
return;
}
}
if (upper) *upper = FREQ_BAND_TABLE[band].upper;
if (lower) *lower = FREQ_BAND_TABLE[band].lower;
// if (step_size) *step_size = FREQ_BAND_TABLE[band].step_size;
}
#endif
int FREQUENCY_tx_freq_check(const uint32_t Frequency)
{ // return '0' if TX frequency is allowed
// otherwise return '-1'
if (Frequency < BX4819_BAND1.lower || Frequency > BX4819_BAND2.upper)
return -1; // BX radio chip does not work out this range
if (Frequency >= BX4819_BAND1.upper && Frequency < BX4819_BAND2.lower)
return -1; // BX radio chip does not work in this range
if (Frequency >= AIR_BAND.lower && Frequency < AIR_BAND.upper)
return -1; // TX not allowed in the airband
if (Frequency < FREQ_BAND_TABLE[0].lower || Frequency > FREQ_BAND_TABLE[ARRAY_SIZE(FREQ_BAND_TABLE) - 1].upper)
return -1; // TX not allowed outside this range
switch (g_eeprom.config.setting.freq_lock)
{
default:
case FREQ_LOCK_NORMAL:
if (Frequency >= AIR_BAND.upper && Frequency < 17400000)
return 0;
if (Frequency >= 17400000 && Frequency < 35000000)
if (g_eeprom.config.setting.enable_tx_200)
return 0;
if (Frequency >= 35000000 && Frequency < 40000000)
if (g_eeprom.config.setting.enable_tx_350 && g_eeprom.config.setting.enable_350)
return 0;
if (Frequency >= 40000000 && Frequency < 47000000)
return 0;
if (Frequency >= 47000000 && Frequency <= 60000000)
if (g_eeprom.config.setting.enable_tx_470)
return 0;
break;
case FREQ_LOCK_FCC:
if (Frequency >= 14400000 && Frequency < 14800000)
return 0;
if (Frequency >= 42000000 && Frequency < 45000000)
return 0;
break;
case FREQ_LOCK_CE:
if (Frequency >= 14400000 && Frequency < 14600000)
return 0;
if (Frequency >= 43000000 && Frequency < 44000000)
return 0;
break;
case FREQ_LOCK_GB:
if (Frequency >= 14400000 && Frequency < 14800000)
return 0;
if (Frequency >= 43000000 && Frequency < 44000000)
return 0;
break;
case FREQ_LOCK_430:
if (Frequency >= AIR_BAND.lower && Frequency < 17400000)
return 0;
if (Frequency >= 40000000 && Frequency < 43000000)
return 0;
break;
case FREQ_LOCK_438:
if (Frequency >= AIR_BAND.lower && Frequency < 17400000)
return 0;
if (Frequency >= 40000000 && Frequency < 43800000)
return 0;
break;
case FREQ_LOCK_446:
if (Frequency >= 446.00625 && Frequency <= 446.19375)
return 0;
break;
#ifdef ENABLE_TX_UNLOCK
case FREQ_LOCK_TX_UNLOCK:
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(FREQ_BAND_TABLE); i++)
if (Frequency >= FREQ_BAND_TABLE[i].lower && Frequency < FREQ_BAND_TABLE[i].upper)
return 0;
break;
}
#endif
}
// dis-allowed TX frequency
return -1;
}
int FREQUENCY_rx_freq_check(const uint32_t Frequency)
{ // return '0' if RX frequency is allowed
// otherwise return '-1'
if (Frequency < FREQ_BAND_TABLE[0].lower || Frequency > FREQ_BAND_TABLE[ARRAY_SIZE(FREQ_BAND_TABLE) - 1].upper)
return -1;
if (Frequency >= BX4819_BAND1.upper && Frequency < BX4819_BAND2.lower)
return -1;
return 0; // OK frequency
}