0
mirror of https://github.com/OneOfEleven/uv-k5-firmware-custom.git synced 2025-04-28 14:21:25 +03:00
2023-10-24 04:43:26 +01:00

426 lines
9.4 KiB
C

#include <string.h>
#include "bsp/dp32g030/crc.h"
#include "mdc1200.h"
#include "misc.h"
// MDC1200 sync bit reversals and packet magic
//
// 24-bit pre-amble
// 40-bit sync
//
//static const uint8_t header[] = {0x00, 0x00, 0x05, 0x55, 0x55, 0x55, 0x55, 0x07, 0x09, 0x2a, 0x44, 0x6f};
//static const uint8_t header[] = {0x00, 0x00, 0x0A, 0xAA, 0xAA, 0xAA, 0xAA, 0x07, 0x09, 0x2a, 0x44, 0x6f};
//
//static const uint8_t header[] = {0x00, 0x00, 0x0A, 0xAA, 0xAA, 0xAA, 0xA0, 0xb6, 0x8e, 0x03, 0xbb, 0x14};
static const uint8_t header[] = {0x00, 0x00, 0x05, 0x55, 0x55, 0x55, 0x50, 0x29, 0x71, 0xfc, 0x44, 0xeb};
uint8_t bit_reverse_8(uint8_t n)
{
n = ((n >> 1) & 0x55u) | ((n << 1) & 0xAAu);
n = ((n >> 2) & 0x33u) | ((n << 2) & 0xCCu);
n = ((n >> 4) & 0x0Fu) | ((n << 4) & 0xF0u);
return n;
}
uint16_t bit_reverse_16(uint16_t n)
{ // untested
n = ((n >> 1) & 0x5555u) | ((n << 1) & 0xAAAAu);
n = ((n >> 2) & 0x3333u) | ((n << 2) & 0xCCCCu);
n = ((n >> 4) & 0x0F0Fu) | ((n << 4) & 0xF0F0u);
n = ((n >> 8) & 0x00FFu) | ((n << 8) & 0xFF00u);
return n;
}
uint32_t bit_reverse_32(uint32_t n)
{
n = ((n >> 1) & 0x55555555u) | ((n << 1) & 0xAAAAAAAAu);
n = ((n >> 2) & 0x33333333u) | ((n << 2) & 0xCCCCCCCCu);
n = ((n >> 4) & 0x0F0F0F0Fu) | ((n << 4) & 0xF0F0F0F0u);
n = ((n >> 8) & 0x00FF00FFu) | ((n << 8) & 0xFF00FF00u);
n = ((n >> 16) & 0x0000FFFFu) | ((n << 16) & 0xFFFF0000u);
return n;
}
uint16_t reverse_bits(const uint16_t bits_in, const unsigned int num_bits)
{
uint16_t i;
uint16_t bit;
uint16_t bits_out;
for (i = 1u << (num_bits - 1), bit = 1u, bits_out = 0u; i != 0; i >>= 1)
{
if (bits_in & i)
bits_out |= bit;
bit <<= 1;
}
return bits_out;
}
#if 1
uint16_t compute_crc(const uint8_t *data, const unsigned int data_len)
{ // using the reverse computation avoids having to reverse the bit order during and after
unsigned int i;
uint16_t crc = 0;
for (i = 0; i < data_len; i++)
{
unsigned int k;
crc ^= data[i];
for (k = 8; k > 0; k--)
crc = (crc & 1u) ? (crc >> 1) ^ 0x8408 : crc >> 1;
}
crc ^= 0xffff;
return crc;
}
#else
uint16_t compute_crc(const uint8_t *data, const unsigned int data_len)
{
// this can be done using the CPU's own CRC calculator once we know we're ok
unsigned int i;
#if 0
uint16_t crc;
CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_ENABLE;
#else
uint16_t crc = 0;
#endif
for (i = 0; i < data_len; i++)
{
#if 0
// bit reverse each data byte before adding it to the CRC
// the cortex CPU might have an instruction to bit reverse for us ?
//
CRC_DATAIN = reverse_bits(data[i], 8);
//CRC_DATAIN = bit_reverse_8(data[i]);
#else
uint8_t mask;
// bit reverse each data byte before adding it to the CRC
// the cortex CPU might have an instruction to bit reverse for us ?
//
const uint8_t bits = reverse_bits(data[i], 8);
//const uint8_t bits = bit_reverse_8(*data++);
for (mask = 0x0080; mask != 0; mask >>= 1)
{
uint16_t msb = crc & 0x8000;
if (bits & mask)
msb ^= 0x8000;
crc <<= 1;
if (msb)
crc ^= 0x1021;
}
#endif
}
#if 0
crc = (uint16_t)CRC_DATAOUT;
CRC_CR = (CRC_CR & ~CRC_CR_CRC_EN_MASK) | CRC_CR_CRC_EN_BITS_DISABLE;
#endif
// bit reverse and invert the final CRC
return reverse_bits(crc, 16) ^ 0xffff;
// return bit_reverse_16(crc) ^ 0xffff;
}
#endif
#define FEC_K 7
void error_correction(uint8_t *data)
{
int i;
uint8_t csr[FEC_K];
uint8_t syn = 0;
// uint8_t shift_reg = 0;
syn = 0;
for (i = 0; i < FEC_K; i++)
csr[i] = 0;
for (i = 0; i < FEC_K; i++)
{
const uint8_t bi = data[i];
int bit_num;
for (bit_num = 0; bit_num < 8; bit_num++)
{
uint8_t b;
int k;
unsigned int ec = 0;
#if 0
shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u);
b = ((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u;
#else
for (k = FEC_K - 1; k > 0; k--)
csr[k] = csr[k - 1];
csr[0] = (bi >> bit_num) & 1u;
b = (csr[0] + csr[2] + csr[5] + csr[6]) & 1u;
#endif
syn = (syn << 1) | (((b ^ (data[i + FEC_K] >> bit_num)) & 1u) ? 1u : 0u);
if (syn & 0x80) ec++;
if (syn & 0x20) ec++;
if (syn & 0x04) ec++;
if (syn & 0x02) ec++;
if (ec >= 3)
{ // correct error
int fix_i = i;
int fix_j = bit_num - 7;
syn ^= 0xA6;
if (fix_j < 0)
{
--fix_i;
fix_j += 8;
}
if (fix_i >= 0)
data[fix_i] ^= 1u << fix_j;
}
}
}
}
uint8_t * decode_data(uint8_t *data)
{
uint16_t crc1;
uint16_t crc2;
// (void)data;
{ // de-interleave
unsigned int i;
unsigned int k;
uint8_t deinterleaved[(FEC_K * 2) * 8];
// de-interleave the received bits
for (i = 0, k = 0; i < 16; i++)
{
unsigned int m;
for (m = 0; m < FEC_K; m++)
{
const unsigned int n = (m * 16) + i;
deinterleaved[k++] = (data[n >> 3] >> ((7 - n) & 7u)) & 1u;
}
}
// copy the de-interleaved bits to the data buffer
for (i = 0; i < (FEC_K * 2); i++)
{
unsigned int k;
uint8_t b = 0;
for (k = 0; k < 8; k++)
if (deinterleaved[(i * 8) + k])
b |= 1u << k;
data[i] = b;
}
}
error_correction(data);
crc1 = compute_crc(data, 4);
crc2 = (data[5] << 8) | (data[4] << 0);
if (crc1 != crc2)
return NULL;
// appears to be a valid packet
// TODO: more stuff
return NULL;
}
uint8_t * encode_data(uint8_t *data)
{
// R=1/2 K=7 convolutional coder
//
// op 0x01
// arg 0x80
// id 0x1234
// crc 0x2E3E
// status 0x00
// FEC 0x6580A862DD8808
//
// 01 80 1234 2E3E 00 6580A862DD8808
//
// 1. reverse the bit order for each byte of the first 7 bytes (to undo the reversal performed for display, above)
// 2. feed those bits into a shift register which is preloaded with all zeros
// 3. for each bit, calculate the modulo-2 sum: bit(n-0) + bit(n-2) + bit(n-5) + bit(n-6)
// 4. then for each byte of resulting output, again reverse those bits to generate the values shown above
{ // add the FEC bits to the end of the data
unsigned int i;
uint8_t shift_reg = 0;
for (i = 0; i < FEC_K; i++)
{
unsigned int bit_num;
const uint8_t bi = data[i];
uint8_t bo = 0;
for (bit_num = 0; bit_num < 8; bit_num++)
{
shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u);
bo |= (((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u) << bit_num;
}
data[FEC_K + i] = bo;
}
}
{ // interleave the bits
unsigned int i;
unsigned int k;
unsigned int m;
uint8_t interleaved[(FEC_K * 2) * 8];
// bit interleaver
for (i = 0, k = 0, m = 0; i < (FEC_K * 2); i++)
{
unsigned int bit_num;
const uint8_t b = data[i];
for (bit_num = 0; bit_num < 8; bit_num++)
{
interleaved[k] = (b >> bit_num) & 1u;
k += 16;
if (k >= sizeof(interleaved))
k = ++m;
}
}
// copy the interleaved bits back to the input/output buffer
for (i = 0, k = 0; i < (FEC_K * 2); i++)
{
int bit_num;
uint8_t b = 0;
for (bit_num = 7; bit_num >= 0; bit_num--)
if (interleaved[k++])
b |= 1u << bit_num;
data[i] = b;
}
}
return data + (FEC_K * 2);
}
void delta_modulation(uint8_t *data, const unsigned int size)
{ // xor succesive bits in the entire packet, including the bit reversing pre-amble
uint8_t b1;
unsigned int i;
for (i = 0, b1 = 1u; i < size; i++)
{
int bit_num;
uint8_t in = data[i];
uint8_t out = 0;
for (bit_num = 7; bit_num >= 0; bit_num--)
{
const uint8_t b2 = (in >> bit_num) & 1u;
if (b1 != b2)
out |= 1u << bit_num; // previous bit and new bit are different
b1 = b2;
}
data[i] = out;
}
}
unsigned int MDC1200_encode_single_packet(uint8_t *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id)
{
unsigned int size;
uint16_t crc;
uint8_t *p = data;
memcpy(p, header, sizeof(header));
p += sizeof(header);
p[0] = op;
p[1] = arg;
p[2] = (unit_id >> 8) & 0x00ff;
p[3] = (unit_id >> 0) & 0x00ff;
crc = compute_crc(p, 4);
p[4] = (crc >> 0) & 0x00ff;
p[5] = (crc >> 8) & 0x00ff;
p[6] = 0; // unknown field (00 for PTTIDs, 76 for STS and MSG)
p = encode_data(p);
#if 0
{ // test packet
//
// op 0x01, arg 0x80, id 0xB183
//
const uint8_t test_packet[] = {0x07, 0x25, 0xDD, 0xD5, 0x9F, 0xC5, 0x3D, 0x89, 0x2D, 0xBD, 0x57, 0x35, 0xE7, 0x44};
memcpy(data + sizeof(header), test_packet, sizeof(test_packet));
}
#endif
size = (unsigned int)(p - data);
delta_modulation(data, size);
return size;
// return 26;
}
unsigned int MDC1200_encode_double_packet(uint8_t *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id, const uint8_t b0, const uint8_t b1, const uint8_t b2, const uint8_t b3)
{
unsigned int size;
uint16_t crc;
uint8_t *p = data;
memcpy(p, header, sizeof(header));
p += sizeof(header);
p[0] = op;
p[1] = arg;
p[2] = (unit_id >> 8) & 0x00ff;
p[3] = (unit_id >> 0) & 0x00ff;
crc = compute_crc(p, 4);
p[4] = (crc >> 0) & 0x00ff;
p[5] = (crc >> 8) & 0x00ff;
p[6] = 0; // status byte
p = encode_data(p);
p[0] = b0;
p[1] = b1;
p[2] = b2;
p[3] = b3;
crc = compute_crc(p, 4);
p[4] = (crc >> 0) & 0x00ff;
p[5] = (crc >> 8) & 0x00ff;
p[6] = 0; // status byte
p = encode_data(p);
size = (unsigned int)(p - data);
delta_modulation(data, size);
return size;
// return 40;
}
/*
void test(void)
{
uint8_t data[14 + 14 + 5 + 7];
const int size = MDC1200_encode_single_packet(data, 0x12, 0x34, 0x5678);
// const int size = MDC1200_encode_double_packet(data, 0x55, 0x34, 0x5678, 0x0a, 0x0b, 0x0c, 0x0d);
}
*/