147 lines
5.1 KiB
Rust
147 lines
5.1 KiB
Rust
|
use crate::Adler32;
|
|||
|
use std::ops::{AddAssign, MulAssign, RemAssign};
|
|||
|
|
|||
|
impl Adler32 {
|
|||
|
pub(crate) fn compute(&mut self, bytes: &[u8]) {
|
|||
|
// The basic algorithm is, for every byte:
|
|||
|
// a = (a + byte) % MOD
|
|||
|
// b = (b + a) % MOD
|
|||
|
// where MOD = 65521.
|
|||
|
//
|
|||
|
// For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows:
|
|||
|
// - Between calls to `write`, we ensure that a and b are always in range 0..MOD.
|
|||
|
// - We use 32-bit arithmetic in this function.
|
|||
|
// - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD`
|
|||
|
// operation.
|
|||
|
//
|
|||
|
// According to Wikipedia, b is calculated as follows for non-incremental checksumming:
|
|||
|
// b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521)
|
|||
|
// Where n is the number of bytes and Di is the i-th Byte. We need to change this to account
|
|||
|
// for the previous values of a and b, as well as treat every input Byte as being 255:
|
|||
|
// b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520
|
|||
|
// Or in other words:
|
|||
|
// b_inc = n*65520 + n(n+1)/2*255
|
|||
|
// The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521.
|
|||
|
// 2^32-65521 = n*65520 + n(n+1)/2*255
|
|||
|
// Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552.
|
|||
|
//
|
|||
|
// On top of the optimization outlined above, the algorithm can also be parallelized with a
|
|||
|
// bit more work:
|
|||
|
//
|
|||
|
// Note that b is a linear combination of a vector of input bytes (D1, ..., Dn).
|
|||
|
//
|
|||
|
// If we fix some value k<N and rewrite indices 1, ..., N as
|
|||
|
//
|
|||
|
// 1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k,
|
|||
|
//
|
|||
|
// then we can express a and b in terms of sums of smaller sequences kb and ka:
|
|||
|
//
|
|||
|
// ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k
|
|||
|
// kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k
|
|||
|
//
|
|||
|
// a = ka(1) + ka(2) + ... + ka(k) + 1
|
|||
|
// b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ... - (k-1)*ka(k) + N
|
|||
|
//
|
|||
|
// We use this insight to unroll the main loop and process k=4 bytes at a time.
|
|||
|
// The resulting code is highly amenable to SIMD acceleration, although the immediate speedups
|
|||
|
// stem from increased pipeline parallelism rather than auto-vectorization.
|
|||
|
//
|
|||
|
// This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\
|
|||
|
// en/develop/articles/fast-computation-of-fletcher-checksums.html]
|
|||
|
|
|||
|
const MOD: u32 = 65521;
|
|||
|
const CHUNK_SIZE: usize = 5552 * 4;
|
|||
|
|
|||
|
let mut a = u32::from(self.a);
|
|||
|
let mut b = u32::from(self.b);
|
|||
|
let mut a_vec = U32X4([0; 4]);
|
|||
|
let mut b_vec = a_vec;
|
|||
|
|
|||
|
let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4);
|
|||
|
|
|||
|
// iterate over 4 bytes at a time
|
|||
|
let chunk_iter = bytes.chunks_exact(CHUNK_SIZE);
|
|||
|
let remainder_chunk = chunk_iter.remainder();
|
|||
|
for chunk in chunk_iter {
|
|||
|
for byte_vec in chunk.chunks_exact(4) {
|
|||
|
let val = U32X4::from(byte_vec);
|
|||
|
a_vec += val;
|
|||
|
b_vec += a_vec;
|
|||
|
}
|
|||
|
b += CHUNK_SIZE as u32 * a;
|
|||
|
a_vec %= MOD;
|
|||
|
b_vec %= MOD;
|
|||
|
b %= MOD;
|
|||
|
}
|
|||
|
// special-case the final chunk because it may be shorter than the rest
|
|||
|
for byte_vec in remainder_chunk.chunks_exact(4) {
|
|||
|
let val = U32X4::from(byte_vec);
|
|||
|
a_vec += val;
|
|||
|
b_vec += a_vec;
|
|||
|
}
|
|||
|
b += remainder_chunk.len() as u32 * a;
|
|||
|
a_vec %= MOD;
|
|||
|
b_vec %= MOD;
|
|||
|
b %= MOD;
|
|||
|
|
|||
|
// combine the sub-sum results into the main sum
|
|||
|
b_vec *= 4;
|
|||
|
b_vec.0[1] += MOD - a_vec.0[1];
|
|||
|
b_vec.0[2] += (MOD - a_vec.0[2]) * 2;
|
|||
|
b_vec.0[3] += (MOD - a_vec.0[3]) * 3;
|
|||
|
for &av in a_vec.0.iter() {
|
|||
|
a += av;
|
|||
|
}
|
|||
|
for &bv in b_vec.0.iter() {
|
|||
|
b += bv;
|
|||
|
}
|
|||
|
|
|||
|
// iterate over the remaining few bytes in serial
|
|||
|
for &byte in remainder.iter() {
|
|||
|
a += u32::from(byte);
|
|||
|
b += a;
|
|||
|
}
|
|||
|
|
|||
|
self.a = (a % MOD) as u16;
|
|||
|
self.b = (b % MOD) as u16;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#[derive(Copy, Clone)]
|
|||
|
struct U32X4([u32; 4]);
|
|||
|
|
|||
|
impl U32X4 {
|
|||
|
fn from(bytes: &[u8]) -> Self {
|
|||
|
U32X4([
|
|||
|
u32::from(bytes[0]),
|
|||
|
u32::from(bytes[1]),
|
|||
|
u32::from(bytes[2]),
|
|||
|
u32::from(bytes[3]),
|
|||
|
])
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
impl AddAssign<Self> for U32X4 {
|
|||
|
fn add_assign(&mut self, other: Self) {
|
|||
|
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
|
|||
|
*s += o;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
impl RemAssign<u32> for U32X4 {
|
|||
|
fn rem_assign(&mut self, quotient: u32) {
|
|||
|
for s in self.0.iter_mut() {
|
|||
|
*s %= quotient;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
impl MulAssign<u32> for U32X4 {
|
|||
|
fn mul_assign(&mut self, rhs: u32) {
|
|||
|
for s in self.0.iter_mut() {
|
|||
|
*s *= rhs;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|