236 lines
6.5 KiB
Rust
236 lines
6.5 KiB
Rust
|
//! Fast, SIMD-accelerated CRC32 (IEEE) checksum computation.
|
||
|
//!
|
||
|
//! ## Usage
|
||
|
//!
|
||
|
//! ### Simple usage
|
||
|
//!
|
||
|
//! For simple use-cases, you can call the [`hash()`] convenience function to
|
||
|
//! directly compute the CRC32 checksum for a given byte slice:
|
||
|
//!
|
||
|
//! ```rust
|
||
|
//! let checksum = crc32fast::hash(b"foo bar baz");
|
||
|
//! ```
|
||
|
//!
|
||
|
//! ### Advanced usage
|
||
|
//!
|
||
|
//! For use-cases that require more flexibility or performance, for example when
|
||
|
//! processing large amounts of data, you can create and manipulate a [`Hasher`]:
|
||
|
//!
|
||
|
//! ```rust
|
||
|
//! use crc32fast::Hasher;
|
||
|
//!
|
||
|
//! let mut hasher = Hasher::new();
|
||
|
//! hasher.update(b"foo bar baz");
|
||
|
//! let checksum = hasher.finalize();
|
||
|
//! ```
|
||
|
//!
|
||
|
//! ## Performance
|
||
|
//!
|
||
|
//! This crate contains multiple CRC32 implementations:
|
||
|
//!
|
||
|
//! - A fast baseline implementation which processes up to 16 bytes per iteration
|
||
|
//! - An optimized implementation for modern `x86` using `sse` and `pclmulqdq` instructions
|
||
|
//!
|
||
|
//! Calling the [`Hasher::new`] constructor at runtime will perform a feature detection to select the most
|
||
|
//! optimal implementation for the current CPU feature set.
|
||
|
|
||
|
#![cfg_attr(not(feature = "std"), no_std)]
|
||
|
#![cfg_attr(
|
||
|
all(feature = "nightly", target_arch = "aarch64"),
|
||
|
feature(stdsimd, aarch64_target_feature)
|
||
|
)]
|
||
|
|
||
|
#[deny(missing_docs)]
|
||
|
#[cfg(test)]
|
||
|
#[macro_use]
|
||
|
extern crate quickcheck;
|
||
|
|
||
|
#[macro_use]
|
||
|
extern crate cfg_if;
|
||
|
|
||
|
#[cfg(feature = "std")]
|
||
|
use std as core;
|
||
|
|
||
|
use core::fmt;
|
||
|
use core::hash;
|
||
|
|
||
|
mod baseline;
|
||
|
mod combine;
|
||
|
mod specialized;
|
||
|
mod table;
|
||
|
|
||
|
/// Computes the CRC32 hash of a byte slice.
|
||
|
///
|
||
|
/// Check out [`Hasher`] for more advanced use-cases.
|
||
|
pub fn hash(buf: &[u8]) -> u32 {
|
||
|
let mut h = Hasher::new();
|
||
|
h.update(buf);
|
||
|
h.finalize()
|
||
|
}
|
||
|
|
||
|
#[derive(Clone)]
|
||
|
enum State {
|
||
|
Baseline(baseline::State),
|
||
|
Specialized(specialized::State),
|
||
|
}
|
||
|
|
||
|
#[derive(Clone)]
|
||
|
/// Represents an in-progress CRC32 computation.
|
||
|
pub struct Hasher {
|
||
|
amount: u64,
|
||
|
state: State,
|
||
|
}
|
||
|
|
||
|
const DEFAULT_INIT_STATE: u32 = 0;
|
||
|
|
||
|
impl Hasher {
|
||
|
/// Create a new `Hasher`.
|
||
|
///
|
||
|
/// This will perform a CPU feature detection at runtime to select the most
|
||
|
/// optimal implementation for the current processor architecture.
|
||
|
pub fn new() -> Self {
|
||
|
Self::new_with_initial(DEFAULT_INIT_STATE)
|
||
|
}
|
||
|
|
||
|
/// Create a new `Hasher` with an initial CRC32 state.
|
||
|
///
|
||
|
/// This works just like `Hasher::new`, except that it allows for an initial
|
||
|
/// CRC32 state to be passed in.
|
||
|
pub fn new_with_initial(init: u32) -> Self {
|
||
|
Self::new_with_initial_len(init, 0)
|
||
|
}
|
||
|
|
||
|
/// Create a new `Hasher` with an initial CRC32 state.
|
||
|
///
|
||
|
/// As `new_with_initial`, but also accepts a length (in bytes). The
|
||
|
/// resulting object can then be used with `combine` to compute `crc(a ||
|
||
|
/// b)` from `crc(a)`, `crc(b)`, and `len(b)`.
|
||
|
pub fn new_with_initial_len(init: u32, amount: u64) -> Self {
|
||
|
Self::internal_new_specialized(init, amount)
|
||
|
.unwrap_or_else(|| Self::internal_new_baseline(init, amount))
|
||
|
}
|
||
|
|
||
|
#[doc(hidden)]
|
||
|
// Internal-only API. Don't use.
|
||
|
pub fn internal_new_baseline(init: u32, amount: u64) -> Self {
|
||
|
Hasher {
|
||
|
amount,
|
||
|
state: State::Baseline(baseline::State::new(init)),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[doc(hidden)]
|
||
|
// Internal-only API. Don't use.
|
||
|
pub fn internal_new_specialized(init: u32, amount: u64) -> Option<Self> {
|
||
|
{
|
||
|
if let Some(state) = specialized::State::new(init) {
|
||
|
return Some(Hasher {
|
||
|
amount,
|
||
|
state: State::Specialized(state),
|
||
|
});
|
||
|
}
|
||
|
}
|
||
|
None
|
||
|
}
|
||
|
|
||
|
/// Process the given byte slice and update the hash state.
|
||
|
pub fn update(&mut self, buf: &[u8]) {
|
||
|
self.amount += buf.len() as u64;
|
||
|
match self.state {
|
||
|
State::Baseline(ref mut state) => state.update(buf),
|
||
|
State::Specialized(ref mut state) => state.update(buf),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Finalize the hash state and return the computed CRC32 value.
|
||
|
pub fn finalize(self) -> u32 {
|
||
|
match self.state {
|
||
|
State::Baseline(state) => state.finalize(),
|
||
|
State::Specialized(state) => state.finalize(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Reset the hash state.
|
||
|
pub fn reset(&mut self) {
|
||
|
self.amount = 0;
|
||
|
match self.state {
|
||
|
State::Baseline(ref mut state) => state.reset(),
|
||
|
State::Specialized(ref mut state) => state.reset(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Combine the hash state with the hash state for the subsequent block of bytes.
|
||
|
pub fn combine(&mut self, other: &Self) {
|
||
|
self.amount += other.amount;
|
||
|
let other_crc = other.clone().finalize();
|
||
|
match self.state {
|
||
|
State::Baseline(ref mut state) => state.combine(other_crc, other.amount),
|
||
|
State::Specialized(ref mut state) => state.combine(other_crc, other.amount),
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl fmt::Debug for Hasher {
|
||
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
|
f.debug_struct("crc32fast::Hasher").finish()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl Default for Hasher {
|
||
|
fn default() -> Self {
|
||
|
Self::new()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl hash::Hasher for Hasher {
|
||
|
fn write(&mut self, bytes: &[u8]) {
|
||
|
self.update(bytes)
|
||
|
}
|
||
|
|
||
|
fn finish(&self) -> u64 {
|
||
|
u64::from(self.clone().finalize())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[cfg(test)]
|
||
|
mod test {
|
||
|
use super::Hasher;
|
||
|
|
||
|
quickcheck! {
|
||
|
fn combine(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
|
||
|
let mut hash_a = Hasher::new();
|
||
|
hash_a.update(&bytes_1);
|
||
|
hash_a.update(&bytes_2);
|
||
|
let mut hash_b = Hasher::new();
|
||
|
hash_b.update(&bytes_2);
|
||
|
let mut hash_c = Hasher::new();
|
||
|
hash_c.update(&bytes_1);
|
||
|
hash_c.combine(&hash_b);
|
||
|
|
||
|
hash_a.finalize() == hash_c.finalize()
|
||
|
}
|
||
|
|
||
|
fn combine_from_len(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
|
||
|
let mut hash_a = Hasher::new();
|
||
|
hash_a.update(&bytes_1);
|
||
|
let a = hash_a.finalize();
|
||
|
|
||
|
let mut hash_b = Hasher::new();
|
||
|
hash_b.update(&bytes_2);
|
||
|
let b = hash_b.finalize();
|
||
|
|
||
|
let mut hash_ab = Hasher::new();
|
||
|
hash_ab.update(&bytes_1);
|
||
|
hash_ab.update(&bytes_2);
|
||
|
let ab = hash_ab.finalize();
|
||
|
|
||
|
let mut reconstructed = Hasher::new_with_initial_len(a, bytes_1.len() as u64);
|
||
|
let hash_b_reconstructed = Hasher::new_with_initial_len(b, bytes_2.len() as u64);
|
||
|
|
||
|
reconstructed.combine(&hash_b_reconstructed);
|
||
|
|
||
|
reconstructed.finalize() == ab
|
||
|
}
|
||
|
}
|
||
|
}
|