extern crate tiff; use tiff::decoder::{ifd, Decoder, DecodingResult}; use tiff::encoder::{colortype, Ifd, Ifd8, SRational, TiffEncoder}; use tiff::tags::Tag; use tiff::ColorType; use std::fs::File; use std::io::{Cursor, Seek, SeekFrom}; use std::path::PathBuf; #[test] fn encode_decode() { let mut image_data = Vec::new(); for x in 0..100 { for y in 0..100u8 { let val = x + y; image_data.push(val); image_data.push(val); image_data.push(val); } } let mut file = Cursor::new(Vec::new()); { let mut tiff = TiffEncoder::new(&mut file).unwrap(); let mut image = tiff.new_image::(100, 100).unwrap(); image .encoder() .write_tag(Tag::Artist, "Image-tiff") .unwrap(); image.write_data(&image_data).unwrap(); } { file.seek(SeekFrom::Start(0)).unwrap(); let mut decoder = Decoder::new(&mut file).unwrap(); assert_eq!(decoder.colortype().unwrap(), ColorType::RGB(8)); assert_eq!(decoder.dimensions().unwrap(), (100, 100)); assert_eq!( decoder.get_tag(Tag::Artist).unwrap(), ifd::Value::Ascii("Image-tiff".into()) ); if let DecodingResult::U8(img_res) = decoder.read_image().unwrap() { assert_eq!(image_data, img_res); } else { panic!("Wrong data type"); } } } #[test] fn encode_decode_big() { let mut image_data = Vec::new(); for x in 0..100 { for y in 0..100u8 { let val = x + y; image_data.push(val); image_data.push(val); image_data.push(val); } } let mut file = Cursor::new(Vec::new()); { let mut tiff = TiffEncoder::new_big(&mut file).unwrap(); let mut image = tiff.new_image::(100, 100).unwrap(); image .encoder() .write_tag(Tag::Artist, "Image-tiff") .unwrap(); image.write_data(&image_data).unwrap(); } { file.seek(SeekFrom::Start(0)).unwrap(); let mut decoder = Decoder::new(&mut file).unwrap(); assert_eq!(decoder.colortype().unwrap(), ColorType::RGB(8)); assert_eq!(decoder.dimensions().unwrap(), (100, 100)); assert_eq!( decoder.get_tag(Tag::Artist).unwrap(), ifd::Value::Ascii("Image-tiff".into()) ); if let DecodingResult::U8(img_res) = decoder.read_image().unwrap() { assert_eq!(image_data, img_res); } else { panic!("Wrong data type"); } } } #[test] fn test_encode_ifd() { let mut data = Cursor::new(Vec::new()); { let mut tiff = TiffEncoder::new(&mut data).unwrap(); let mut image_encoder = tiff.new_image::(1, 1).unwrap(); image_encoder.write_strip(&[1]).unwrap(); let encoder = image_encoder.encoder(); // Use the "reusable" tags section as per the TIFF6 spec encoder.write_tag(Tag::Unknown(65000), Ifd(42u32)).unwrap(); encoder .write_tag(Tag::Unknown(65001), &[Ifd(100u32)][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65002), &[Ifd(1u32), Ifd(2u32), Ifd(3u32)][..]) .unwrap(); encoder.write_tag(Tag::Unknown(65010), Ifd8(43u64)).unwrap(); encoder .write_tag(Tag::Unknown(65011), &[Ifd8(100u64)][..]) .unwrap(); encoder .write_tag( Tag::Unknown(65012), &[Ifd8(1u64), Ifd8(2u64), Ifd8(3u64)][..], ) .unwrap(); } // Rewind the cursor for reading data.set_position(0); { let mut decoder = Decoder::new(&mut data).unwrap(); assert_eq!(decoder.assert_tag_u32(65000), 42); assert_eq!(decoder.assert_tag_u32_vec(65000), [42]); assert_eq!(decoder.assert_tag_u32_vec(65001), [100]); assert_eq!(decoder.assert_tag_u32_vec(65002), [1, 2, 3]); assert_eq!(decoder.assert_tag_u64(65010), 43); assert_eq!(decoder.assert_tag_u64_vec(65010), [43]); assert_eq!(decoder.assert_tag_u64_vec(65011), [100]); assert_eq!(decoder.assert_tag_u64_vec(65012), [1, 2, 3]); } } #[test] /// Test that attempting to encode when the input buffer is undersized returns /// an error rather than panicking. /// See: https://github.com/PistonDevelopers/image-tiff/issues/35 fn test_encode_undersized_buffer() { let input_data = vec![1, 2, 3]; let output = Vec::new(); let mut output_stream = Cursor::new(output); if let Ok(mut tiff) = TiffEncoder::new(&mut output_stream) { let res = tiff.write_image::(50, 50, &input_data); assert!(res.is_err()); } } const TEST_IMAGE_DIR: &str = "./tests/images/"; macro_rules! test_roundtrip { ($name:ident, $buffer:ident, $buffer_ty:ty) => { fn $name>( file: &str, expected_type: ColorType, ) { let path = PathBuf::from(TEST_IMAGE_DIR).join(file); let img_file = File::open(path).expect("Cannot find test image!"); let mut decoder = Decoder::new(img_file).expect("Cannot create decoder"); assert_eq!(decoder.colortype().unwrap(), expected_type); let image_data = match decoder.read_image().unwrap() { DecodingResult::$buffer(res) => res, _ => panic!("Wrong data type"), }; let mut file = Cursor::new(Vec::new()); { let mut tiff = TiffEncoder::new(&mut file).unwrap(); let (width, height) = decoder.dimensions().unwrap(); tiff.write_image::(width, height, &image_data).unwrap(); } file.seek(SeekFrom::Start(0)).unwrap(); { let mut decoder = Decoder::new(&mut file).unwrap(); if let DecodingResult::$buffer(img_res) = decoder.read_image().unwrap() { assert_eq!(image_data, img_res); } else { panic!("Wrong data type"); } } } }; } test_roundtrip!(test_u8_roundtrip, U8, u8); test_roundtrip!(test_u16_roundtrip, U16, u16); test_roundtrip!(test_u32_roundtrip, U32, u32); test_roundtrip!(test_u64_roundtrip, U64, u64); test_roundtrip!(test_f32_roundtrip, F32, f32); test_roundtrip!(test_f64_roundtrip, F64, f64); #[test] fn test_gray_u8_roundtrip() { test_u8_roundtrip::("minisblack-1c-8b.tiff", ColorType::Gray(8)); } #[test] fn test_rgb_u8_roundtrip() { test_u8_roundtrip::("rgb-3c-8b.tiff", ColorType::RGB(8)); } #[test] fn test_cmyk_u8_roundtrip() { test_u8_roundtrip::("cmyk-3c-8b.tiff", ColorType::CMYK(8)); } #[test] fn test_gray_u16_roundtrip() { test_u16_roundtrip::("minisblack-1c-16b.tiff", ColorType::Gray(16)); } #[test] fn test_rgb_u16_roundtrip() { test_u16_roundtrip::("rgb-3c-16b.tiff", ColorType::RGB(16)); } #[test] fn test_cmyk_u16_roundtrip() { test_u16_roundtrip::("cmyk-3c-16b.tiff", ColorType::CMYK(16)); } #[test] fn test_gray_u32_roundtrip() { test_u32_roundtrip::("gradient-1c-32b.tiff", ColorType::Gray(32)); } #[test] fn test_rgb_u32_roundtrip() { test_u32_roundtrip::("gradient-3c-32b.tiff", ColorType::RGB(32)); } #[test] fn test_gray_u64_roundtrip() { test_u64_roundtrip::("gradient-1c-64b.tiff", ColorType::Gray(64)); } #[test] fn test_rgb_u64_roundtrip() { test_u64_roundtrip::("gradient-3c-64b.tiff", ColorType::RGB(64)); } #[test] fn test_gray_f32_roundtrip() { test_f32_roundtrip::("gradient-1c-32b-float.tiff", ColorType::Gray(32)); } #[test] fn test_rgb_f32_roundtrip() { test_f32_roundtrip::("gradient-3c-32b-float.tiff", ColorType::RGB(32)); } #[test] fn test_cmyk_f32_roundtrip() { test_f32_roundtrip::("cmyk-3c-32b-float.tiff", ColorType::CMYK(32)); } #[test] fn test_gray_f64_roundtrip() { test_f64_roundtrip::("gradient-1c-64b-float.tiff", ColorType::Gray(64)); } #[test] fn test_ycbcr_u8_roundtrip() { test_u8_roundtrip::("tiled-jpeg-ycbcr.tif", ColorType::YCbCr(8)); } trait AssertDecode { fn assert_tag_u32(&mut self, tag: u16) -> u32; fn assert_tag_u32_vec(&mut self, tag: u16) -> Vec; fn assert_tag_i32(&mut self, tag: u16) -> i32; fn assert_tag_i32_vec(&mut self, tag: u16) -> Vec; fn assert_tag_u64(&mut self, tag: u16) -> u64; fn assert_tag_u64_vec(&mut self, tag: u16) -> Vec; fn assert_tag_i64(&mut self, tag: u16) -> i64; fn assert_tag_i64_vec(&mut self, tag: u16) -> Vec; } impl AssertDecode for Decoder { fn assert_tag_u32(&mut self, tag: u16) -> u32 { self.get_tag(Tag::Unknown(tag)).unwrap().into_u32().unwrap() } fn assert_tag_u32_vec(&mut self, tag: u16) -> Vec { self.get_tag(Tag::Unknown(tag)) .unwrap() .into_u32_vec() .unwrap() } fn assert_tag_i32(&mut self, tag: u16) -> i32 { self.get_tag(Tag::Unknown(tag)).unwrap().into_i32().unwrap() } fn assert_tag_i32_vec(&mut self, tag: u16) -> Vec { self.get_tag(Tag::Unknown(tag)) .unwrap() .into_i32_vec() .unwrap() } fn assert_tag_u64(&mut self, tag: u16) -> u64 { self.get_tag(Tag::Unknown(tag)).unwrap().into_u64().unwrap() } fn assert_tag_u64_vec(&mut self, tag: u16) -> Vec { self.get_tag(Tag::Unknown(tag)) .unwrap() .into_u64_vec() .unwrap() } fn assert_tag_i64(&mut self, tag: u16) -> i64 { self.get_tag(Tag::Unknown(tag)).unwrap().into_i64().unwrap() } fn assert_tag_i64_vec(&mut self, tag: u16) -> Vec { self.get_tag(Tag::Unknown(tag)) .unwrap() .into_i64_vec() .unwrap() } } #[test] fn test_multiple_byte() { let mut data = Cursor::new(Vec::new()); { let mut tiff = TiffEncoder::new(&mut data).unwrap(); let mut image_encoder = tiff.new_image::(1, 1).unwrap(); image_encoder.write_strip(&[1]).unwrap(); let encoder = image_encoder.encoder(); encoder.write_tag(Tag::Unknown(65000), &[1_u8][..]).unwrap(); encoder .write_tag(Tag::Unknown(65001), &[1_u8, 2][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65002), &[1_u8, 2, 3][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65003), &[1_u8, 2, 3, 4][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65004), &[1_u8, 2, 3, 4, 5][..]) .unwrap(); } data.set_position(0); { let mut decoder = Decoder::new(&mut data).unwrap(); assert_eq!(decoder.assert_tag_u32_vec(65000), [1]); assert_eq!(decoder.assert_tag_u32_vec(65001), [1, 2]); assert_eq!(decoder.assert_tag_u32_vec(65002), [1, 2, 3]); assert_eq!(decoder.assert_tag_u32_vec(65003), [1, 2, 3, 4]); assert_eq!(decoder.assert_tag_u32_vec(65004), [1, 2, 3, 4, 5]); } } #[test] /// Test writing signed tags from TIFF 6.0 fn test_signed() { let mut data = Cursor::new(Vec::new()); fn make_srational(i: i32) -> SRational { SRational { n: i, d: 100 } } { let mut tiff = TiffEncoder::new(&mut data).unwrap(); let mut image_encoder = tiff.new_image::(1, 1).unwrap(); image_encoder.write_strip(&[1]).unwrap(); let encoder = image_encoder.encoder(); //Use the "reusable" tags section as per the TIFF6 spec encoder.write_tag(Tag::Unknown(65000), -1_i8).unwrap(); encoder .write_tag(Tag::Unknown(65001), &[-1_i8][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65002), &[-1_i8, 2][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65003), &[-1_i8, 2, -3][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65004), &[-1_i8, 2, -3, 4][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65005), &[-1_i8, 2, -3, 4, -5][..]) .unwrap(); encoder.write_tag(Tag::Unknown(65010), -1_i16).unwrap(); encoder.write_tag(Tag::Unknown(65011), -1_i16).unwrap(); encoder .write_tag(Tag::Unknown(65012), &[-1_i16, 2][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65013), &[-1_i16, 2, -3][..]) .unwrap(); encoder.write_tag(Tag::Unknown(65020), -1_i32).unwrap(); encoder .write_tag(Tag::Unknown(65021), &[-1_i32][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65022), &[-1_i32, 2][..]) .unwrap(); encoder.write_tag(Tag::Unknown(65030), -1_i64).unwrap(); encoder .write_tag(Tag::Unknown(65031), &[-1_i64][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65032), &[-1_i64, 2][..]) .unwrap(); encoder .write_tag(Tag::Unknown(65040), make_srational(-1)) .unwrap(); encoder .write_tag( Tag::Unknown(65041), &[make_srational(-1), make_srational(2)][..], ) .unwrap(); } //Rewind the cursor for reading data.set_position(0); { let mut decoder = Decoder::new(&mut data).unwrap(); assert_eq!(decoder.assert_tag_i32(65000), -1); assert_eq!(decoder.assert_tag_i32_vec(65001), [-1]); assert_eq!(decoder.assert_tag_i32_vec(65002), [-1, 2]); assert_eq!(decoder.assert_tag_i32_vec(65003), [-1, 2, -3]); assert_eq!(decoder.assert_tag_i32_vec(65004), [-1, 2, -3, 4]); assert_eq!(decoder.assert_tag_i32_vec(65005), [-1, 2, -3, 4, -5],); assert_eq!(decoder.assert_tag_i32(65010), -1); assert_eq!(decoder.assert_tag_i32_vec(65011), [-1]); assert_eq!(decoder.assert_tag_i32_vec(65012), [-1, 2]); assert_eq!(decoder.assert_tag_i32_vec(65013), [-1, 2, -3]); assert_eq!(decoder.assert_tag_i32(65020), -1); assert_eq!(decoder.assert_tag_i32_vec(65021), [-1]); assert_eq!(decoder.assert_tag_i32_vec(65022), [-1, 2]); assert_eq!(decoder.assert_tag_i64(65030), -1); assert_eq!(decoder.assert_tag_i64_vec(65031), [-1]); assert_eq!(decoder.assert_tag_i64_vec(65032), [-1, 2]); assert_eq!(decoder.assert_tag_i32_vec(65040), [-1, 100]); assert_eq!(decoder.assert_tag_i32_vec(65041), [-1_i32, 100, 2, 100]); } } #[test] /// check multipage image handling fn test_multipage_image() { let mut img_file = Cursor::new(Vec::new()); { // first create a multipage image with 2 images let mut img_encoder = TiffEncoder::new(&mut img_file).unwrap(); // write first grayscale image (2x2 16-bit) let img1: Vec = [1, 2, 3, 4].to_vec(); img_encoder .write_image::(2, 2, &img1[..]) .unwrap(); // write second grayscale image (3x3 8-bit) let img2: Vec = [9, 8, 7, 6, 5, 4, 3, 2, 1].to_vec(); img_encoder .write_image::(3, 3, &img2[..]) .unwrap(); } // seek to the beginning of the file, so that it can be decoded img_file.seek(SeekFrom::Start(0)).unwrap(); { let mut img_decoder = Decoder::new(&mut img_file).unwrap(); // check the dimensions of the image in the first page assert_eq!(img_decoder.dimensions().unwrap(), (2, 2)); img_decoder.next_image().unwrap(); // check the dimensions of the image in the second page assert_eq!(img_decoder.dimensions().unwrap(), (3, 3)); } } #[test] /// verify rows per strip setting fn test_rows_per_strip() { let mut file = Cursor::new(Vec::new()); { let mut img_encoder = TiffEncoder::new(&mut file).unwrap(); let mut image = img_encoder.new_image::(100, 100).unwrap(); assert_eq!(image.next_strip_sample_count(), 100 * 100); image.rows_per_strip(2).unwrap(); assert_eq!(image.next_strip_sample_count(), 2 * 100); let img2: Vec = vec![0; 2 * 100]; image.write_strip(&img2[..]).unwrap(); assert!(image.rows_per_strip(5).is_err()); for i in 1..50 { let img2: Vec = vec![i; 2 * 100]; image.write_strip(&img2[..]).unwrap(); } assert!(image.write_strip(&img2[..]).is_err()); image.finish().unwrap(); } file.seek(SeekFrom::Start(0)).unwrap(); { let mut decoder = Decoder::new(&mut file).unwrap(); assert_eq!(decoder.get_tag_u64(Tag::RowsPerStrip).unwrap(), 2); assert_eq!(decoder.strip_count().unwrap(), 50); for i in 0..50 { let img2 = [i; 2 * 100]; match decoder.read_chunk(i as u32).unwrap() { DecodingResult::U8(data) => assert_eq!(&img2[..], &data[..]), other => panic!("Incorrect strip type {:?}", other), } } } }