Files
fparkan/vendor/half/src/bfloat.rs
2024-01-08 01:21:28 +04:00

1842 lines
57 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
use core::{
cmp::Ordering,
iter::{Product, Sum},
num::FpCategory,
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
};
#[cfg(not(target_arch = "spirv"))]
use core::{
fmt::{
Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
},
num::ParseFloatError,
str::FromStr,
};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "zerocopy")]
use zerocopy::{AsBytes, FromBytes};
pub(crate) mod convert;
/// A 16-bit floating point type implementing the [`bfloat16`] format.
///
/// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard
/// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by
/// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of
/// 11 bits, [`bf16`] has a precision of only 8 bits.
///
/// Like [`f16`][crate::f16], [`bf16`] does not offer arithmetic operations as it is intended for
/// compact storage rather than calculations. Operations should be performed with [`f32`] or
/// higher-precision types and converted to/from [`bf16`] as necessary.
///
/// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
#[allow(non_camel_case_types)]
#[derive(Clone, Copy, Default)]
#[repr(transparent)]
#[cfg_attr(feature = "serde", derive(Serialize))]
#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
#[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))]
pub struct bf16(u16);
impl bf16 {
/// Constructs a [`bf16`] value from the raw bits.
#[inline]
#[must_use]
pub const fn from_bits(bits: u16) -> bf16 {
bf16(bits)
}
/// Constructs a [`bf16`] value from a 32-bit floating point value.
///
/// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved.
/// Subnormal values that are too tiny to be represented will result in ±0. All other values
/// are truncated and rounded to the nearest representable value.
#[inline]
#[must_use]
pub fn from_f32(value: f32) -> bf16 {
Self::from_f32_const(value)
}
/// Constructs a [`bf16`] value from a 32-bit floating point value.
///
/// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
/// in any non-`const` context.
///
/// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved.
/// Subnormal values that are too tiny to be represented will result in ±0. All other values
/// are truncated and rounded to the nearest representable value.
#[inline]
#[must_use]
pub const fn from_f32_const(value: f32) -> bf16 {
bf16(convert::f32_to_bf16(value))
}
/// Constructs a [`bf16`] value from a 64-bit floating point value.
///
/// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved.
/// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that
/// underflow the minimum exponent will result in subnormals or ±0. All other values are
/// truncated and rounded to the nearest representable value.
#[inline]
#[must_use]
pub fn from_f64(value: f64) -> bf16 {
Self::from_f64_const(value)
}
/// Constructs a [`bf16`] value from a 64-bit floating point value.
///
/// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
/// in any non-`const` context.
///
/// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved.
/// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that
/// underflow the minimum exponent will result in subnormals or ±0. All other values are
/// truncated and rounded to the nearest representable value.
#[inline]
#[must_use]
pub const fn from_f64_const(value: f64) -> bf16 {
bf16(convert::f64_to_bf16(value))
}
/// Converts a [`bf16`] into the underlying bit representation.
#[inline]
#[must_use]
pub const fn to_bits(self) -> u16 {
self.0
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// little-endian byte order.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = bf16::from_f32(12.5).to_le_bytes();
/// assert_eq!(bytes, [0x48, 0x41]);
/// ```
#[inline]
#[must_use]
pub const fn to_le_bytes(self) -> [u8; 2] {
self.0.to_le_bytes()
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// big-endian (network) byte order.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = bf16::from_f32(12.5).to_be_bytes();
/// assert_eq!(bytes, [0x41, 0x48]);
/// ```
#[inline]
#[must_use]
pub const fn to_be_bytes(self) -> [u8; 2] {
self.0.to_be_bytes()
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code should use
/// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate,
/// instead.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = bf16::from_f32(12.5).to_ne_bytes();
/// assert_eq!(bytes, if cfg!(target_endian = "big") {
/// [0x41, 0x48]
/// } else {
/// [0x48, 0x41]
/// });
/// ```
#[inline]
#[must_use]
pub const fn to_ne_bytes(self) -> [u8; 2] {
self.0.to_ne_bytes()
}
/// Creates a floating point value from its representation as a byte array in little endian.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = bf16::from_le_bytes([0x48, 0x41]);
/// assert_eq!(value, bf16::from_f32(12.5));
/// ```
#[inline]
#[must_use]
pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 {
bf16::from_bits(u16::from_le_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in big endian.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = bf16::from_be_bytes([0x41, 0x48]);
/// assert_eq!(value, bf16::from_f32(12.5));
/// ```
#[inline]
#[must_use]
pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 {
bf16::from_bits(u16::from_be_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in native endian.
///
/// As the target platform's native endianness is used, portable code likely wants to use
/// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as
/// appropriate instead.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") {
/// [0x41, 0x48]
/// } else {
/// [0x48, 0x41]
/// });
/// assert_eq!(value, bf16::from_f32(12.5));
/// ```
#[inline]
#[must_use]
pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 {
bf16::from_bits(u16::from_ne_bytes(bytes))
}
/// Converts a [`bf16`] value into an [`f32`] value.
///
/// This conversion is lossless as all values can be represented exactly in [`f32`].
#[inline]
#[must_use]
pub fn to_f32(self) -> f32 {
self.to_f32_const()
}
/// Converts a [`bf16`] value into an [`f32`] value.
///
/// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
/// in any non-`const` context.
///
/// This conversion is lossless as all values can be represented exactly in [`f32`].
#[inline]
#[must_use]
pub const fn to_f32_const(self) -> f32 {
convert::bf16_to_f32(self.0)
}
/// Converts a [`bf16`] value into an [`f64`] value.
///
/// This conversion is lossless as all values can be represented exactly in [`f64`].
#[inline]
#[must_use]
pub fn to_f64(self) -> f64 {
self.to_f64_const()
}
/// Converts a [`bf16`] value into an [`f64`] value.
///
/// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
/// in any non-`const` context.
///
/// This conversion is lossless as all values can be represented exactly in [`f64`].
#[inline]
#[must_use]
pub const fn to_f64_const(self) -> f64 {
convert::bf16_to_f64(self.0)
}
/// Returns `true` if this value is NaN and `false` otherwise.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = bf16::NAN;
/// let f = bf16::from_f32(7.0_f32);
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
#[inline]
#[must_use]
pub const fn is_nan(self) -> bool {
self.0 & 0x7FFFu16 > 0x7F80u16
}
/// Returns `true` if this value is ±∞ and `false` otherwise.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = bf16::from_f32(7.0f32);
/// let inf = bf16::INFINITY;
/// let neg_inf = bf16::NEG_INFINITY;
/// let nan = bf16::NAN;
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
#[inline]
#[must_use]
pub const fn is_infinite(self) -> bool {
self.0 & 0x7FFFu16 == 0x7F80u16
}
/// Returns `true` if this number is neither infinite nor NaN.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = bf16::from_f32(7.0f32);
/// let inf = bf16::INFINITY;
/// let neg_inf = bf16::NEG_INFINITY;
/// let nan = bf16::NAN;
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
#[inline]
#[must_use]
pub const fn is_finite(self) -> bool {
self.0 & 0x7F80u16 != 0x7F80u16
}
/// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let min = bf16::MIN_POSITIVE;
/// let max = bf16::MAX;
/// let lower_than_min = bf16::from_f32(1.0e-39_f32);
/// let zero = bf16::from_f32(0.0_f32);
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!bf16::NAN.is_normal());
/// assert!(!bf16::INFINITY.is_normal());
/// // Values between 0 and `min` are subnormal.
/// assert!(!lower_than_min.is_normal());
/// ```
#[inline]
#[must_use]
pub const fn is_normal(self) -> bool {
let exp = self.0 & 0x7F80u16;
exp != 0x7F80u16 && exp != 0
}
/// Returns the floating point category of the number.
///
/// If only one property is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// # Examples
///
/// ```rust
/// use std::num::FpCategory;
/// # use half::prelude::*;
///
/// let num = bf16::from_f32(12.4_f32);
/// let inf = bf16::INFINITY;
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// ```
#[must_use]
pub const fn classify(self) -> FpCategory {
let exp = self.0 & 0x7F80u16;
let man = self.0 & 0x007Fu16;
match (exp, man) {
(0, 0) => FpCategory::Zero,
(0, _) => FpCategory::Subnormal,
(0x7F80u16, 0) => FpCategory::Infinite,
(0x7F80u16, _) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
/// Returns a number that represents the sign of `self`.
///
/// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY]
/// * 1.0 if the number is negative, 0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY]
/// * [`NAN`][bf16::NAN] if the number is NaN
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = bf16::from_f32(3.5_f32);
///
/// assert_eq!(f.signum(), bf16::from_f32(1.0));
/// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0));
///
/// assert!(bf16::NAN.signum().is_nan());
/// ```
#[must_use]
pub const fn signum(self) -> bf16 {
if self.is_nan() {
self
} else if self.0 & 0x8000u16 != 0 {
Self::NEG_ONE
} else {
Self::ONE
}
}
/// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a
/// positive sign bit and +∞.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = bf16::NAN;
/// let f = bf16::from_f32(7.0_f32);
/// let g = bf16::from_f32(-7.0_f32);
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// // NaN can be either positive or negative
/// assert!(nan.is_sign_positive() != nan.is_sign_negative());
/// ```
#[inline]
#[must_use]
pub const fn is_sign_positive(self) -> bool {
self.0 & 0x8000u16 == 0
}
/// Returns `true` if and only if `self` has a negative sign, including 0.0, NaNs with a
/// negative sign bit and −∞.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = bf16::NAN;
/// let f = bf16::from_f32(7.0f32);
/// let g = bf16::from_f32(-7.0f32);
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// // NaN can be either positive or negative
/// assert!(nan.is_sign_positive() != nan.is_sign_negative());
/// ```
#[inline]
#[must_use]
pub const fn is_sign_negative(self) -> bool {
self.0 & 0x8000u16 != 0
}
/// Returns a number composed of the magnitude of `self` and the sign of `sign`.
///
/// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
/// If `self` is NaN, then NaN with the sign of `sign` is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let f = bf16::from_f32(3.5);
///
/// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
/// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
/// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
/// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
///
/// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan());
/// ```
#[inline]
#[must_use]
pub const fn copysign(self, sign: bf16) -> bf16 {
bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
}
/// Returns the maximum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let x = bf16::from_f32(1.0);
/// let y = bf16::from_f32(2.0);
///
/// assert_eq!(x.max(y), y);
/// ```
#[inline]
#[must_use]
pub fn max(self, other: bf16) -> bf16 {
if other > self && !other.is_nan() {
other
} else {
self
}
}
/// Returns the minimum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let x = bf16::from_f32(1.0);
/// let y = bf16::from_f32(2.0);
///
/// assert_eq!(x.min(y), x);
/// ```
#[inline]
#[must_use]
pub fn min(self, other: bf16) -> bf16 {
if other < self && !other.is_nan() {
other
} else {
self
}
}
/// Restrict a value to a certain interval unless it is NaN.
///
/// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
/// Otherwise this returns `self`.
///
/// Note that this function returns NaN if the initial value was NaN as well.
///
/// # Panics
/// Panics if `min > max`, `min` is NaN, or `max` is NaN.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0));
/// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0));
/// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0));
/// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan());
/// ```
#[inline]
#[must_use]
pub fn clamp(self, min: bf16, max: bf16) -> bf16 {
assert!(min <= max);
let mut x = self;
if x < min {
x = min;
}
if x > max {
x = max;
}
x
}
/// Returns the ordering between `self` and `other`.
///
/// Unlike the standard partial comparison between floating point numbers,
/// this comparison always produces an ordering in accordance to
/// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in the following sequence:
///
/// - negative quiet NaN
/// - negative signaling NaN
/// - negative infinity
/// - negative numbers
/// - negative subnormal numbers
/// - negative zero
/// - positive zero
/// - positive subnormal numbers
/// - positive numbers
/// - positive infinity
/// - positive signaling NaN
/// - positive quiet NaN.
///
/// The ordering established by this function does not always agree with the
/// [`PartialOrd`] and [`PartialEq`] implementations of `bf16`. For example,
/// they consider negative and positive zero equal, while `total_cmp`
/// doesn't.
///
/// The interpretation of the signaling NaN bit follows the definition in
/// the IEEE 754 standard, which may not match the interpretation by some of
/// the older, non-conformant (e.g. MIPS) hardware implementations.
///
/// # Examples
/// ```
/// # use half::bf16;
/// let mut v: Vec<bf16> = vec![];
/// v.push(bf16::ONE);
/// v.push(bf16::INFINITY);
/// v.push(bf16::NEG_INFINITY);
/// v.push(bf16::NAN);
/// v.push(bf16::MAX_SUBNORMAL);
/// v.push(-bf16::MAX_SUBNORMAL);
/// v.push(bf16::ZERO);
/// v.push(bf16::NEG_ZERO);
/// v.push(bf16::NEG_ONE);
/// v.push(bf16::MIN_POSITIVE);
///
/// v.sort_by(|a, b| a.total_cmp(&b));
///
/// assert!(v
/// .into_iter()
/// .zip(
/// [
/// bf16::NEG_INFINITY,
/// bf16::NEG_ONE,
/// -bf16::MAX_SUBNORMAL,
/// bf16::NEG_ZERO,
/// bf16::ZERO,
/// bf16::MAX_SUBNORMAL,
/// bf16::MIN_POSITIVE,
/// bf16::ONE,
/// bf16::INFINITY,
/// bf16::NAN
/// ]
/// .iter()
/// )
/// .all(|(a, b)| a.to_bits() == b.to_bits()));
/// ```
// Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
#[inline]
#[must_use]
pub fn total_cmp(&self, other: &Self) -> Ordering {
let mut left = self.to_bits() as i16;
let mut right = other.to_bits() as i16;
left ^= (((left >> 15) as u16) >> 1) as i16;
right ^= (((right >> 15) as u16) >> 1) as i16;
left.cmp(&right)
}
/// Alternate serialize adapter for serializing as a float.
///
/// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
/// implementation that serializes as an [`f32`] value. It is designed for use with
/// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
/// the default deserialize implementation.
///
/// # Examples
///
/// A demonstration on how to use this adapater:
///
/// ```
/// use serde::{Serialize, Deserialize};
/// use half::bf16;
///
/// #[derive(Serialize, Deserialize)]
/// struct MyStruct {
/// #[serde(serialize_with = "bf16::serialize_as_f32")]
/// value: bf16 // Will be serialized as f32 instead of u16
/// }
/// ```
#[cfg(feature = "serde")]
pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
serializer.serialize_f32(self.to_f32())
}
/// Alternate serialize adapter for serializing as a string.
///
/// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
/// implementation that serializes as a string value. It is designed for use with
/// `serialize_with` serde attributes. Deserialization from string values is already supported
/// by the default deserialize implementation.
///
/// # Examples
///
/// A demonstration on how to use this adapater:
///
/// ```
/// use serde::{Serialize, Deserialize};
/// use half::bf16;
///
/// #[derive(Serialize, Deserialize)]
/// struct MyStruct {
/// #[serde(serialize_with = "bf16::serialize_as_string")]
/// value: bf16 // Will be serialized as a string instead of u16
/// }
/// ```
#[cfg(feature = "serde")]
pub fn serialize_as_string<S: serde::Serializer>(
&self,
serializer: S,
) -> Result<S::Ok, S::Error> {
serializer.serialize_str(&self.to_string())
}
/// Approximate number of [`bf16`] significant digits in base 10
pub const DIGITS: u32 = 2;
/// [`bf16`]
/// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
///
/// This is the difference between 1.0 and the next largest representable number.
pub const EPSILON: bf16 = bf16(0x3C00u16);
/// [`bf16`] positive Infinity (+∞)
pub const INFINITY: bf16 = bf16(0x7F80u16);
/// Number of [`bf16`] significant digits in base 2
pub const MANTISSA_DIGITS: u32 = 8;
/// Largest finite [`bf16`] value
pub const MAX: bf16 = bf16(0x7F7F);
/// Maximum possible [`bf16`] power of 10 exponent
pub const MAX_10_EXP: i32 = 38;
/// Maximum possible [`bf16`] power of 2 exponent
pub const MAX_EXP: i32 = 128;
/// Smallest finite [`bf16`] value
pub const MIN: bf16 = bf16(0xFF7F);
/// Minimum possible normal [`bf16`] power of 10 exponent
pub const MIN_10_EXP: i32 = -37;
/// One greater than the minimum possible normal [`bf16`] power of 2 exponent
pub const MIN_EXP: i32 = -125;
/// Smallest positive normal [`bf16`] value
pub const MIN_POSITIVE: bf16 = bf16(0x0080u16);
/// [`bf16`] Not a Number (NaN)
pub const NAN: bf16 = bf16(0x7FC0u16);
/// [`bf16`] negative infinity (-∞).
pub const NEG_INFINITY: bf16 = bf16(0xFF80u16);
/// The radix or base of the internal representation of [`bf16`]
pub const RADIX: u32 = 2;
/// Minimum positive subnormal [`bf16`] value
pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16);
/// Maximum subnormal [`bf16`] value
pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16);
/// [`bf16`] 1
pub const ONE: bf16 = bf16(0x3F80u16);
/// [`bf16`] 0
pub const ZERO: bf16 = bf16(0x0000u16);
/// [`bf16`] -0
pub const NEG_ZERO: bf16 = bf16(0x8000u16);
/// [`bf16`] -1
pub const NEG_ONE: bf16 = bf16(0xBF80u16);
/// [`bf16`] Euler's number ()
pub const E: bf16 = bf16(0x402Eu16);
/// [`bf16`] Archimedes' constant (π)
pub const PI: bf16 = bf16(0x4049u16);
/// [`bf16`] 1/π
pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16);
/// [`bf16`] 1/√2
pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16);
/// [`bf16`] 2/π
pub const FRAC_2_PI: bf16 = bf16(0x3F23u16);
/// [`bf16`] 2/√π
pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16);
/// [`bf16`] π/2
pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16);
/// [`bf16`] π/3
pub const FRAC_PI_3: bf16 = bf16(0x3F86u16);
/// [`bf16`] π/4
pub const FRAC_PI_4: bf16 = bf16(0x3F49u16);
/// [`bf16`] π/6
pub const FRAC_PI_6: bf16 = bf16(0x3F06u16);
/// [`bf16`] π/8
pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16);
/// [`bf16`] 𝗅𝗇 10
pub const LN_10: bf16 = bf16(0x4013u16);
/// [`bf16`] 𝗅𝗇 2
pub const LN_2: bf16 = bf16(0x3F31u16);
/// [`bf16`] 𝗅𝗈𝗀₁₀ℯ
pub const LOG10_E: bf16 = bf16(0x3EDEu16);
/// [`bf16`] 𝗅𝗈𝗀₁₀2
pub const LOG10_2: bf16 = bf16(0x3E9Au16);
/// [`bf16`] 𝗅𝗈𝗀₂ℯ
pub const LOG2_E: bf16 = bf16(0x3FB9u16);
/// [`bf16`] 𝗅𝗈𝗀₂10
pub const LOG2_10: bf16 = bf16(0x4055u16);
/// [`bf16`] √2
pub const SQRT_2: bf16 = bf16(0x3FB5u16);
}
impl From<bf16> for f32 {
#[inline]
fn from(x: bf16) -> f32 {
x.to_f32()
}
}
impl From<bf16> for f64 {
#[inline]
fn from(x: bf16) -> f64 {
x.to_f64()
}
}
impl From<i8> for bf16 {
#[inline]
fn from(x: i8) -> bf16 {
// Convert to f32, then to bf16
bf16::from_f32(f32::from(x))
}
}
impl From<u8> for bf16 {
#[inline]
fn from(x: u8) -> bf16 {
// Convert to f32, then to f16
bf16::from_f32(f32::from(x))
}
}
impl PartialEq for bf16 {
fn eq(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
(self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
}
}
}
impl PartialOrd for bf16 {
fn partial_cmp(&self, other: &bf16) -> Option<Ordering> {
if self.is_nan() || other.is_nan() {
None
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => Some(self.0.cmp(&other.0)),
(false, true) => {
if (self.0 | other.0) & 0x7FFFu16 == 0 {
Some(Ordering::Equal)
} else {
Some(Ordering::Greater)
}
}
(true, false) => {
if (self.0 | other.0) & 0x7FFFu16 == 0 {
Some(Ordering::Equal)
} else {
Some(Ordering::Less)
}
}
(true, true) => Some(other.0.cmp(&self.0)),
}
}
}
fn lt(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 < other.0,
(false, true) => false,
(true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
(true, true) => self.0 > other.0,
}
}
}
fn le(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 <= other.0,
(false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
(true, false) => true,
(true, true) => self.0 >= other.0,
}
}
}
fn gt(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 > other.0,
(false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
(true, false) => false,
(true, true) => self.0 < other.0,
}
}
}
fn ge(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 >= other.0,
(false, true) => true,
(true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
(true, true) => self.0 <= other.0,
}
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl FromStr for bf16 {
type Err = ParseFloatError;
fn from_str(src: &str) -> Result<bf16, ParseFloatError> {
f32::from_str(src).map(bf16::from_f32)
}
}
#[cfg(not(target_arch = "spirv"))]
impl Debug for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:?}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl Display for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl LowerExp for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:e}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl UpperExp for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:E}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl Binary for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:b}", self.0)
}
}
#[cfg(not(target_arch = "spirv"))]
impl Octal for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:o}", self.0)
}
}
#[cfg(not(target_arch = "spirv"))]
impl LowerHex for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:x}", self.0)
}
}
#[cfg(not(target_arch = "spirv"))]
impl UpperHex for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:X}", self.0)
}
}
impl Neg for bf16 {
type Output = Self;
fn neg(self) -> Self::Output {
Self(self.0 ^ 0x8000)
}
}
impl Neg for &bf16 {
type Output = <bf16 as Neg>::Output;
#[inline]
fn neg(self) -> Self::Output {
Neg::neg(*self)
}
}
impl Add for bf16 {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs))
}
}
impl Add<&bf16> for bf16 {
type Output = <bf16 as Add<bf16>>::Output;
#[inline]
fn add(self, rhs: &bf16) -> Self::Output {
self.add(*rhs)
}
}
impl Add<&bf16> for &bf16 {
type Output = <bf16 as Add<bf16>>::Output;
#[inline]
fn add(self, rhs: &bf16) -> Self::Output {
(*self).add(*rhs)
}
}
impl Add<bf16> for &bf16 {
type Output = <bf16 as Add<bf16>>::Output;
#[inline]
fn add(self, rhs: bf16) -> Self::Output {
(*self).add(rhs)
}
}
impl AddAssign for bf16 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = (*self).add(rhs);
}
}
impl AddAssign<&bf16> for bf16 {
#[inline]
fn add_assign(&mut self, rhs: &bf16) {
*self = (*self).add(rhs);
}
}
impl Sub for bf16 {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs))
}
}
impl Sub<&bf16> for bf16 {
type Output = <bf16 as Sub<bf16>>::Output;
#[inline]
fn sub(self, rhs: &bf16) -> Self::Output {
self.sub(*rhs)
}
}
impl Sub<&bf16> for &bf16 {
type Output = <bf16 as Sub<bf16>>::Output;
#[inline]
fn sub(self, rhs: &bf16) -> Self::Output {
(*self).sub(*rhs)
}
}
impl Sub<bf16> for &bf16 {
type Output = <bf16 as Sub<bf16>>::Output;
#[inline]
fn sub(self, rhs: bf16) -> Self::Output {
(*self).sub(rhs)
}
}
impl SubAssign for bf16 {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = (*self).sub(rhs);
}
}
impl SubAssign<&bf16> for bf16 {
#[inline]
fn sub_assign(&mut self, rhs: &bf16) {
*self = (*self).sub(rhs);
}
}
impl Mul for bf16 {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs))
}
}
impl Mul<&bf16> for bf16 {
type Output = <bf16 as Mul<bf16>>::Output;
#[inline]
fn mul(self, rhs: &bf16) -> Self::Output {
self.mul(*rhs)
}
}
impl Mul<&bf16> for &bf16 {
type Output = <bf16 as Mul<bf16>>::Output;
#[inline]
fn mul(self, rhs: &bf16) -> Self::Output {
(*self).mul(*rhs)
}
}
impl Mul<bf16> for &bf16 {
type Output = <bf16 as Mul<bf16>>::Output;
#[inline]
fn mul(self, rhs: bf16) -> Self::Output {
(*self).mul(rhs)
}
}
impl MulAssign for bf16 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = (*self).mul(rhs);
}
}
impl MulAssign<&bf16> for bf16 {
#[inline]
fn mul_assign(&mut self, rhs: &bf16) {
*self = (*self).mul(rhs);
}
}
impl Div for bf16 {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs))
}
}
impl Div<&bf16> for bf16 {
type Output = <bf16 as Div<bf16>>::Output;
#[inline]
fn div(self, rhs: &bf16) -> Self::Output {
self.div(*rhs)
}
}
impl Div<&bf16> for &bf16 {
type Output = <bf16 as Div<bf16>>::Output;
#[inline]
fn div(self, rhs: &bf16) -> Self::Output {
(*self).div(*rhs)
}
}
impl Div<bf16> for &bf16 {
type Output = <bf16 as Div<bf16>>::Output;
#[inline]
fn div(self, rhs: bf16) -> Self::Output {
(*self).div(rhs)
}
}
impl DivAssign for bf16 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
*self = (*self).div(rhs);
}
}
impl DivAssign<&bf16> for bf16 {
#[inline]
fn div_assign(&mut self, rhs: &bf16) {
*self = (*self).div(rhs);
}
}
impl Rem for bf16 {
type Output = Self;
fn rem(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs))
}
}
impl Rem<&bf16> for bf16 {
type Output = <bf16 as Rem<bf16>>::Output;
#[inline]
fn rem(self, rhs: &bf16) -> Self::Output {
self.rem(*rhs)
}
}
impl Rem<&bf16> for &bf16 {
type Output = <bf16 as Rem<bf16>>::Output;
#[inline]
fn rem(self, rhs: &bf16) -> Self::Output {
(*self).rem(*rhs)
}
}
impl Rem<bf16> for &bf16 {
type Output = <bf16 as Rem<bf16>>::Output;
#[inline]
fn rem(self, rhs: bf16) -> Self::Output {
(*self).rem(rhs)
}
}
impl RemAssign for bf16 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
*self = (*self).rem(rhs);
}
}
impl RemAssign<&bf16> for bf16 {
#[inline]
fn rem_assign(&mut self, rhs: &bf16) {
*self = (*self).rem(rhs);
}
}
impl Product for bf16 {
#[inline]
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
impl<'a> Product<&'a bf16> for bf16 {
#[inline]
fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
impl Sum for bf16 {
#[inline]
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).sum())
}
}
impl<'a> Sum<&'a bf16> for bf16 {
#[inline]
fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
#[cfg(feature = "serde")]
struct Visitor;
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for bf16 {
fn deserialize<D>(deserializer: D) -> Result<bf16, D::Error>
where
D: serde::de::Deserializer<'de>,
{
deserializer.deserialize_newtype_struct("bf16", Visitor)
}
}
#[cfg(feature = "serde")]
impl<'de> serde::de::Visitor<'de> for Visitor {
type Value = bf16;
fn expecting(&self, formatter: &mut alloc::fmt::Formatter) -> alloc::fmt::Result {
write!(formatter, "tuple struct bf16")
}
fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
where
D: serde::Deserializer<'de>,
{
Ok(bf16(<u16 as Deserialize>::deserialize(deserializer)?))
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
v.parse().map_err(|_| {
serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string")
})
}
fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(bf16::from_f32(v))
}
fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(bf16::from_f64(v))
}
}
#[allow(
clippy::cognitive_complexity,
clippy::float_cmp,
clippy::neg_cmp_op_on_partial_ord
)]
#[cfg(test)]
mod test {
use super::*;
use core::cmp::Ordering;
#[cfg(feature = "num-traits")]
use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive};
use quickcheck_macros::quickcheck;
#[cfg(feature = "num-traits")]
#[test]
fn as_primitive() {
let two = bf16::from_f32(2.0);
assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two);
assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2);
assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two);
assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0);
assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two);
assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0);
}
#[cfg(feature = "num-traits")]
#[test]
fn to_primitive() {
let two = bf16::from_f32(2.0);
assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
}
#[cfg(feature = "num-traits")]
#[test]
fn from_primitive() {
let two = bf16::from_f32(2.0);
assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two);
assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
}
#[test]
fn test_bf16_consts_from_f32() {
let one = bf16::from_f32(1.0);
let zero = bf16::from_f32(0.0);
let neg_zero = bf16::from_f32(-0.0);
let neg_one = bf16::from_f32(-1.0);
let inf = bf16::from_f32(core::f32::INFINITY);
let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY);
let nan = bf16::from_f32(core::f32::NAN);
assert_eq!(bf16::ONE, one);
assert_eq!(bf16::ZERO, zero);
assert!(zero.is_sign_positive());
assert_eq!(bf16::NEG_ZERO, neg_zero);
assert!(neg_zero.is_sign_negative());
assert_eq!(bf16::NEG_ONE, neg_one);
assert!(neg_one.is_sign_negative());
assert_eq!(bf16::INFINITY, inf);
assert_eq!(bf16::NEG_INFINITY, neg_inf);
assert!(nan.is_nan());
assert!(bf16::NAN.is_nan());
let e = bf16::from_f32(core::f32::consts::E);
let pi = bf16::from_f32(core::f32::consts::PI);
let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI);
let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI);
let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2);
let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3);
let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4);
let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6);
let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8);
let ln_10 = bf16::from_f32(core::f32::consts::LN_10);
let ln_2 = bf16::from_f32(core::f32::consts::LN_2);
let log10_e = bf16::from_f32(core::f32::consts::LOG10_E);
// core::f32::consts::LOG10_2 requires rustc 1.43.0
let log10_2 = bf16::from_f32(2f32.log10());
let log2_e = bf16::from_f32(core::f32::consts::LOG2_E);
// core::f32::consts::LOG2_10 requires rustc 1.43.0
let log2_10 = bf16::from_f32(10f32.log2());
let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2);
assert_eq!(bf16::E, e);
assert_eq!(bf16::PI, pi);
assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
assert_eq!(bf16::LN_10, ln_10);
assert_eq!(bf16::LN_2, ln_2);
assert_eq!(bf16::LOG10_E, log10_e);
assert_eq!(bf16::LOG10_2, log10_2);
assert_eq!(bf16::LOG2_E, log2_e);
assert_eq!(bf16::LOG2_10, log2_10);
assert_eq!(bf16::SQRT_2, sqrt_2);
}
#[test]
fn test_bf16_consts_from_f64() {
let one = bf16::from_f64(1.0);
let zero = bf16::from_f64(0.0);
let neg_zero = bf16::from_f64(-0.0);
let inf = bf16::from_f64(core::f64::INFINITY);
let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY);
let nan = bf16::from_f64(core::f64::NAN);
assert_eq!(bf16::ONE, one);
assert_eq!(bf16::ZERO, zero);
assert_eq!(bf16::NEG_ZERO, neg_zero);
assert_eq!(bf16::INFINITY, inf);
assert_eq!(bf16::NEG_INFINITY, neg_inf);
assert!(nan.is_nan());
assert!(bf16::NAN.is_nan());
let e = bf16::from_f64(core::f64::consts::E);
let pi = bf16::from_f64(core::f64::consts::PI);
let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI);
let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI);
let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2);
let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3);
let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4);
let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6);
let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8);
let ln_10 = bf16::from_f64(core::f64::consts::LN_10);
let ln_2 = bf16::from_f64(core::f64::consts::LN_2);
let log10_e = bf16::from_f64(core::f64::consts::LOG10_E);
// core::f64::consts::LOG10_2 requires rustc 1.43.0
let log10_2 = bf16::from_f64(2f64.log10());
let log2_e = bf16::from_f64(core::f64::consts::LOG2_E);
// core::f64::consts::LOG2_10 requires rustc 1.43.0
let log2_10 = bf16::from_f64(10f64.log2());
let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2);
assert_eq!(bf16::E, e);
assert_eq!(bf16::PI, pi);
assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
assert_eq!(bf16::LN_10, ln_10);
assert_eq!(bf16::LN_2, ln_2);
assert_eq!(bf16::LOG10_E, log10_e);
assert_eq!(bf16::LOG10_2, log10_2);
assert_eq!(bf16::LOG2_E, log2_e);
assert_eq!(bf16::LOG2_10, log2_10);
assert_eq!(bf16::SQRT_2, sqrt_2);
}
#[test]
fn test_nan_conversion_to_smaller() {
let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
let nan32 = f32::from_bits(0x7F80_0001u32);
let neg_nan32 = f32::from_bits(0xFF80_0001u32);
let nan32_from_64 = nan64 as f32;
let neg_nan32_from_64 = neg_nan64 as f32;
let nan16_from_64 = bf16::from_f64(nan64);
let neg_nan16_from_64 = bf16::from_f64(neg_nan64);
let nan16_from_32 = bf16::from_f32(nan32);
let neg_nan16_from_32 = bf16::from_f32(neg_nan32);
assert!(nan64.is_nan() && nan64.is_sign_positive());
assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
assert!(nan32.is_nan() && nan32.is_sign_positive());
assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive());
assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative());
assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive());
assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative());
assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive());
assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative());
}
#[test]
fn test_nan_conversion_to_larger() {
let nan16 = bf16::from_bits(0x7F81u16);
let neg_nan16 = bf16::from_bits(0xFF81u16);
let nan32 = f32::from_bits(0x7F80_0001u32);
let neg_nan32 = f32::from_bits(0xFF80_0001u32);
let nan32_from_16 = f32::from(nan16);
let neg_nan32_from_16 = f32::from(neg_nan16);
let nan64_from_16 = f64::from(nan16);
let neg_nan64_from_16 = f64::from(neg_nan16);
let nan64_from_32 = f64::from(nan32);
let neg_nan64_from_32 = f64::from(neg_nan32);
assert!(nan16.is_nan() && nan16.is_sign_positive());
assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
assert!(nan32.is_nan() && nan32.is_sign_positive());
assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive());
assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative());
assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive());
assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative());
assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive());
assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative());
}
#[test]
fn test_bf16_to_f32() {
let f = bf16::from_f32(7.0);
assert_eq!(f.to_f32(), 7.0f32);
// 7.1 is NOT exactly representable in 16-bit, it's rounded
let f = bf16::from_f32(7.1);
let diff = (f.to_f32() - 7.1f32).abs();
// diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
assert!(diff <= 4.0 * bf16::EPSILON.to_f32());
let tiny32 = f32::from_bits(0x0001_0000u32);
assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32);
assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32);
assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32));
assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32));
}
#[test]
fn test_bf16_to_f64() {
let f = bf16::from_f64(7.0);
assert_eq!(f.to_f64(), 7.0f64);
// 7.1 is NOT exactly representable in 16-bit, it's rounded
let f = bf16::from_f64(7.1);
let diff = (f.to_f64() - 7.1f64).abs();
// diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
assert!(diff <= 4.0 * bf16::EPSILON.to_f64());
let tiny64 = 2.0f64.powi(-133);
assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64);
assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64);
assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64));
assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64));
}
#[test]
fn test_comparisons() {
let zero = bf16::from_f64(0.0);
let one = bf16::from_f64(1.0);
let neg_zero = bf16::from_f64(-0.0);
let neg_one = bf16::from_f64(-1.0);
assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
assert!(zero == neg_zero);
assert!(neg_zero == zero);
assert!(!(zero != neg_zero));
assert!(!(neg_zero != zero));
assert!(!(zero < neg_zero));
assert!(!(neg_zero < zero));
assert!(zero <= neg_zero);
assert!(neg_zero <= zero);
assert!(!(zero > neg_zero));
assert!(!(neg_zero > zero));
assert!(zero >= neg_zero);
assert!(neg_zero >= zero);
assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
assert!(!(one == neg_zero));
assert!(!(neg_zero == one));
assert!(one != neg_zero);
assert!(neg_zero != one);
assert!(!(one < neg_zero));
assert!(neg_zero < one);
assert!(!(one <= neg_zero));
assert!(neg_zero <= one);
assert!(one > neg_zero);
assert!(!(neg_zero > one));
assert!(one >= neg_zero);
assert!(!(neg_zero >= one));
assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
assert!(!(one == neg_one));
assert!(!(neg_one == one));
assert!(one != neg_one);
assert!(neg_one != one);
assert!(!(one < neg_one));
assert!(neg_one < one);
assert!(!(one <= neg_one));
assert!(neg_one <= one);
assert!(one > neg_one);
assert!(!(neg_one > one));
assert!(one >= neg_one);
assert!(!(neg_one >= one));
}
#[test]
#[allow(clippy::erasing_op, clippy::identity_op)]
fn round_to_even_f32() {
// smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
let min_sub = bf16::from_bits(1);
let min_sub_f = (-133f32).exp2();
assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
// 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
// 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
// 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
assert_eq!(
bf16::from_f32(min_sub_f * 0.49).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f32(min_sub_f * 0.50).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f32(min_sub_f * 0.51).to_bits(),
min_sub.to_bits() * 1
);
// 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
// 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
// 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
assert_eq!(
bf16::from_f32(min_sub_f * 1.49).to_bits(),
min_sub.to_bits() * 1
);
assert_eq!(
bf16::from_f32(min_sub_f * 1.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f32(min_sub_f * 1.51).to_bits(),
min_sub.to_bits() * 2
);
// 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
// 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
// 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
assert_eq!(
bf16::from_f32(min_sub_f * 2.49).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f32(min_sub_f * 2.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f32(min_sub_f * 2.51).to_bits(),
min_sub.to_bits() * 3
);
assert_eq!(
bf16::from_f32(250.49f32).to_bits(),
bf16::from_f32(250.0).to_bits()
);
assert_eq!(
bf16::from_f32(250.50f32).to_bits(),
bf16::from_f32(250.0).to_bits()
);
assert_eq!(
bf16::from_f32(250.51f32).to_bits(),
bf16::from_f32(251.0).to_bits()
);
assert_eq!(
bf16::from_f32(251.49f32).to_bits(),
bf16::from_f32(251.0).to_bits()
);
assert_eq!(
bf16::from_f32(251.50f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(251.51f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(252.49f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(252.50f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(252.51f32).to_bits(),
bf16::from_f32(253.0).to_bits()
);
}
#[test]
#[allow(clippy::erasing_op, clippy::identity_op)]
fn round_to_even_f64() {
// smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
let min_sub = bf16::from_bits(1);
let min_sub_f = (-133f64).exp2();
assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
// 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
// 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
// 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
assert_eq!(
bf16::from_f64(min_sub_f * 0.49).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f64(min_sub_f * 0.50).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f64(min_sub_f * 0.51).to_bits(),
min_sub.to_bits() * 1
);
// 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
// 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
// 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
assert_eq!(
bf16::from_f64(min_sub_f * 1.49).to_bits(),
min_sub.to_bits() * 1
);
assert_eq!(
bf16::from_f64(min_sub_f * 1.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f64(min_sub_f * 1.51).to_bits(),
min_sub.to_bits() * 2
);
// 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
// 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
// 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
assert_eq!(
bf16::from_f64(min_sub_f * 2.49).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f64(min_sub_f * 2.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f64(min_sub_f * 2.51).to_bits(),
min_sub.to_bits() * 3
);
assert_eq!(
bf16::from_f64(250.49f64).to_bits(),
bf16::from_f64(250.0).to_bits()
);
assert_eq!(
bf16::from_f64(250.50f64).to_bits(),
bf16::from_f64(250.0).to_bits()
);
assert_eq!(
bf16::from_f64(250.51f64).to_bits(),
bf16::from_f64(251.0).to_bits()
);
assert_eq!(
bf16::from_f64(251.49f64).to_bits(),
bf16::from_f64(251.0).to_bits()
);
assert_eq!(
bf16::from_f64(251.50f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(251.51f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(252.49f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(252.50f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(252.51f64).to_bits(),
bf16::from_f64(253.0).to_bits()
);
}
impl quickcheck::Arbitrary for bf16 {
fn arbitrary(g: &mut quickcheck::Gen) -> Self {
bf16(u16::arbitrary(g))
}
}
#[quickcheck]
fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool {
let roundtrip = bf16::from_f32(f.to_f32());
if f.is_nan() {
roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
} else {
f.0 == roundtrip.0
}
}
#[quickcheck]
fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool {
let roundtrip = bf16::from_f64(f.to_f64());
if f.is_nan() {
roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
} else {
f.0 == roundtrip.0
}
}
}