fparkan/vendor/serde_json/tests/test.rs
Valentin Popov 1b6a04ca55
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
2024-01-08 01:21:28 +04:00

2506 lines
73 KiB
Rust

#![cfg(not(feature = "preserve_order"))]
#![allow(
clippy::assertions_on_result_states,
clippy::cast_precision_loss,
clippy::derive_partial_eq_without_eq,
clippy::excessive_precision,
clippy::float_cmp,
clippy::items_after_statements,
clippy::let_underscore_untyped,
clippy::shadow_unrelated,
clippy::too_many_lines,
clippy::unreadable_literal,
clippy::unseparated_literal_suffix,
clippy::vec_init_then_push,
clippy::zero_sized_map_values
)]
#[macro_use]
mod macros;
#[cfg(feature = "raw_value")]
use ref_cast::RefCast;
use serde::de::{self, IgnoredAny, IntoDeserializer};
use serde::ser::{self, SerializeMap, SerializeSeq, Serializer};
use serde::{Deserialize, Serialize};
use serde_bytes::{ByteBuf, Bytes};
#[cfg(feature = "raw_value")]
use serde_json::value::RawValue;
use serde_json::{
from_reader, from_slice, from_str, from_value, json, to_string, to_string_pretty, to_value,
to_vec, Deserializer, Number, Value,
};
use std::collections::BTreeMap;
#[cfg(feature = "raw_value")]
use std::collections::HashMap;
use std::fmt::{self, Debug};
use std::hash::BuildHasher;
#[cfg(feature = "raw_value")]
use std::hash::{Hash, Hasher};
use std::io;
use std::iter;
use std::marker::PhantomData;
use std::mem;
use std::str::FromStr;
use std::string::ToString;
use std::{f32, f64};
use std::{i16, i32, i64, i8};
use std::{u16, u32, u64, u8};
macro_rules! treemap {
() => {
BTreeMap::new()
};
($($k:expr => $v:expr),+ $(,)?) => {
{
let mut m = BTreeMap::new();
$(
m.insert($k, $v);
)+
m
}
};
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
#[serde(deny_unknown_fields)]
enum Animal {
Dog,
Frog(String, Vec<isize>),
Cat { age: usize, name: String },
AntHive(Vec<String>),
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
struct Inner {
a: (),
b: usize,
c: Vec<String>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
struct Outer {
inner: Vec<Inner>,
}
fn test_encode_ok<T>(errors: &[(T, &str)])
where
T: PartialEq + Debug + ser::Serialize,
{
for &(ref value, out) in errors {
let out = out.to_string();
let s = to_string(value).unwrap();
assert_eq!(s, out);
let v = to_value(value).unwrap();
let s = to_string(&v).unwrap();
assert_eq!(s, out);
}
}
fn test_pretty_encode_ok<T>(errors: &[(T, &str)])
where
T: PartialEq + Debug + ser::Serialize,
{
for &(ref value, out) in errors {
let out = out.to_string();
let s = to_string_pretty(value).unwrap();
assert_eq!(s, out);
let v = to_value(value).unwrap();
let s = to_string_pretty(&v).unwrap();
assert_eq!(s, out);
}
}
#[test]
fn test_write_null() {
let tests = &[((), "null")];
test_encode_ok(tests);
test_pretty_encode_ok(tests);
}
#[test]
fn test_write_u64() {
let tests = &[(3u64, "3"), (u64::MAX, &u64::MAX.to_string())];
test_encode_ok(tests);
test_pretty_encode_ok(tests);
}
#[test]
fn test_write_i64() {
let tests = &[
(3i64, "3"),
(-2i64, "-2"),
(-1234i64, "-1234"),
(i64::MIN, &i64::MIN.to_string()),
];
test_encode_ok(tests);
test_pretty_encode_ok(tests);
}
#[test]
fn test_write_f64() {
let tests = &[
(3.0, "3.0"),
(3.1, "3.1"),
(-1.5, "-1.5"),
(0.5, "0.5"),
(f64::MIN, "-1.7976931348623157e308"),
(f64::MAX, "1.7976931348623157e308"),
(f64::EPSILON, "2.220446049250313e-16"),
];
test_encode_ok(tests);
test_pretty_encode_ok(tests);
}
#[test]
fn test_encode_nonfinite_float_yields_null() {
let v = to_value(::std::f64::NAN.copysign(1.0)).unwrap();
assert!(v.is_null());
let v = to_value(::std::f64::NAN.copysign(-1.0)).unwrap();
assert!(v.is_null());
let v = to_value(::std::f64::INFINITY).unwrap();
assert!(v.is_null());
let v = to_value(-::std::f64::INFINITY).unwrap();
assert!(v.is_null());
let v = to_value(::std::f32::NAN.copysign(1.0)).unwrap();
assert!(v.is_null());
let v = to_value(::std::f32::NAN.copysign(-1.0)).unwrap();
assert!(v.is_null());
let v = to_value(::std::f32::INFINITY).unwrap();
assert!(v.is_null());
let v = to_value(-::std::f32::INFINITY).unwrap();
assert!(v.is_null());
}
#[test]
fn test_write_str() {
let tests = &[("", "\"\""), ("foo", "\"foo\"")];
test_encode_ok(tests);
test_pretty_encode_ok(tests);
}
#[test]
fn test_write_bool() {
let tests = &[(true, "true"), (false, "false")];
test_encode_ok(tests);
test_pretty_encode_ok(tests);
}
#[test]
fn test_write_char() {
let tests = &[
('n', "\"n\""),
('"', "\"\\\"\""),
('\\', "\"\\\\\""),
('/', "\"/\""),
('\x08', "\"\\b\""),
('\x0C', "\"\\f\""),
('\n', "\"\\n\""),
('\r', "\"\\r\""),
('\t', "\"\\t\""),
('\x0B', "\"\\u000b\""),
('\u{3A3}', "\"\u{3A3}\""),
];
test_encode_ok(tests);
test_pretty_encode_ok(tests);
}
#[test]
fn test_write_list() {
test_encode_ok(&[
(vec![], "[]"),
(vec![true], "[true]"),
(vec![true, false], "[true,false]"),
]);
test_encode_ok(&[
(vec![vec![], vec![], vec![]], "[[],[],[]]"),
(vec![vec![1, 2, 3], vec![], vec![]], "[[1,2,3],[],[]]"),
(vec![vec![], vec![1, 2, 3], vec![]], "[[],[1,2,3],[]]"),
(vec![vec![], vec![], vec![1, 2, 3]], "[[],[],[1,2,3]]"),
]);
test_pretty_encode_ok(&[
(vec![vec![], vec![], vec![]], pretty_str!([[], [], []])),
(
vec![vec![1, 2, 3], vec![], vec![]],
pretty_str!([[1, 2, 3], [], []]),
),
(
vec![vec![], vec![1, 2, 3], vec![]],
pretty_str!([[], [1, 2, 3], []]),
),
(
vec![vec![], vec![], vec![1, 2, 3]],
pretty_str!([[], [], [1, 2, 3]]),
),
]);
test_pretty_encode_ok(&[
(vec![], "[]"),
(vec![true], pretty_str!([true])),
(vec![true, false], pretty_str!([true, false])),
]);
let long_test_list = json!([false, null, ["foo\nbar", 3.5]]);
test_encode_ok(&[(
long_test_list.clone(),
json_str!([false, null, ["foo\nbar", 3.5]]),
)]);
test_pretty_encode_ok(&[(
long_test_list,
pretty_str!([false, null, ["foo\nbar", 3.5]]),
)]);
}
#[test]
fn test_write_object() {
test_encode_ok(&[
(treemap!(), "{}"),
(treemap!("a".to_string() => true), "{\"a\":true}"),
(
treemap!(
"a".to_string() => true,
"b".to_string() => false,
),
"{\"a\":true,\"b\":false}",
),
]);
test_encode_ok(&[
(
treemap![
"a".to_string() => treemap![],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
"{\"a\":{},\"b\":{},\"c\":{}}",
),
(
treemap![
"a".to_string() => treemap![
"a".to_string() => treemap!["a" => vec![1,2,3]],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
"{\"a\":{\"a\":{\"a\":[1,2,3]},\"b\":{},\"c\":{}},\"b\":{},\"c\":{}}",
),
(
treemap![
"a".to_string() => treemap![],
"b".to_string() => treemap![
"a".to_string() => treemap!["a" => vec![1,2,3]],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
"c".to_string() => treemap![],
],
"{\"a\":{},\"b\":{\"a\":{\"a\":[1,2,3]},\"b\":{},\"c\":{}},\"c\":{}}",
),
(
treemap![
"a".to_string() => treemap![],
"b".to_string() => treemap![],
"c".to_string() => treemap![
"a".to_string() => treemap!["a" => vec![1,2,3]],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
],
"{\"a\":{},\"b\":{},\"c\":{\"a\":{\"a\":[1,2,3]},\"b\":{},\"c\":{}}}",
),
]);
test_encode_ok(&[(treemap!['c' => ()], "{\"c\":null}")]);
test_pretty_encode_ok(&[
(
treemap![
"a".to_string() => treemap![],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
pretty_str!({
"a": {},
"b": {},
"c": {}
}),
),
(
treemap![
"a".to_string() => treemap![
"a".to_string() => treemap!["a" => vec![1,2,3]],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
pretty_str!({
"a": {
"a": {
"a": [
1,
2,
3
]
},
"b": {},
"c": {}
},
"b": {},
"c": {}
}),
),
(
treemap![
"a".to_string() => treemap![],
"b".to_string() => treemap![
"a".to_string() => treemap!["a" => vec![1,2,3]],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
"c".to_string() => treemap![],
],
pretty_str!({
"a": {},
"b": {
"a": {
"a": [
1,
2,
3
]
},
"b": {},
"c": {}
},
"c": {}
}),
),
(
treemap![
"a".to_string() => treemap![],
"b".to_string() => treemap![],
"c".to_string() => treemap![
"a".to_string() => treemap!["a" => vec![1,2,3]],
"b".to_string() => treemap![],
"c".to_string() => treemap![],
],
],
pretty_str!({
"a": {},
"b": {},
"c": {
"a": {
"a": [
1,
2,
3
]
},
"b": {},
"c": {}
}
}),
),
]);
test_pretty_encode_ok(&[
(treemap!(), "{}"),
(
treemap!("a".to_string() => true),
pretty_str!({
"a": true
}),
),
(
treemap!(
"a".to_string() => true,
"b".to_string() => false,
),
pretty_str!( {
"a": true,
"b": false
}),
),
]);
let complex_obj = json!({
"b": [
{"c": "\x0c\x1f\r"},
{"d": ""}
]
});
test_encode_ok(&[(
complex_obj.clone(),
json_str!({
"b": [
{
"c": (r#""\f\u001f\r""#)
},
{
"d": ""
}
]
}),
)]);
test_pretty_encode_ok(&[(
complex_obj,
pretty_str!({
"b": [
{
"c": (r#""\f\u001f\r""#)
},
{
"d": ""
}
]
}),
)]);
}
#[test]
fn test_write_tuple() {
test_encode_ok(&[((5,), "[5]")]);
test_pretty_encode_ok(&[((5,), pretty_str!([5]))]);
test_encode_ok(&[((5, (6, "abc")), "[5,[6,\"abc\"]]")]);
test_pretty_encode_ok(&[((5, (6, "abc")), pretty_str!([5, [6, "abc"]]))]);
}
#[test]
fn test_write_enum() {
test_encode_ok(&[
(Animal::Dog, "\"Dog\""),
(
Animal::Frog("Henry".to_string(), vec![]),
"{\"Frog\":[\"Henry\",[]]}",
),
(
Animal::Frog("Henry".to_string(), vec![349]),
"{\"Frog\":[\"Henry\",[349]]}",
),
(
Animal::Frog("Henry".to_string(), vec![349, 102]),
"{\"Frog\":[\"Henry\",[349,102]]}",
),
(
Animal::Cat {
age: 5,
name: "Kate".to_string(),
},
"{\"Cat\":{\"age\":5,\"name\":\"Kate\"}}",
),
(
Animal::AntHive(vec!["Bob".to_string(), "Stuart".to_string()]),
"{\"AntHive\":[\"Bob\",\"Stuart\"]}",
),
]);
test_pretty_encode_ok(&[
(Animal::Dog, "\"Dog\""),
(
Animal::Frog("Henry".to_string(), vec![]),
pretty_str!({
"Frog": [
"Henry",
[]
]
}),
),
(
Animal::Frog("Henry".to_string(), vec![349]),
pretty_str!({
"Frog": [
"Henry",
[
349
]
]
}),
),
(
Animal::Frog("Henry".to_string(), vec![349, 102]),
pretty_str!({
"Frog": [
"Henry",
[
349,
102
]
]
}),
),
]);
}
#[test]
fn test_write_option() {
test_encode_ok(&[(None, "null"), (Some("jodhpurs"), "\"jodhpurs\"")]);
test_encode_ok(&[
(None, "null"),
(Some(vec!["foo", "bar"]), "[\"foo\",\"bar\"]"),
]);
test_pretty_encode_ok(&[(None, "null"), (Some("jodhpurs"), "\"jodhpurs\"")]);
test_pretty_encode_ok(&[
(None, "null"),
(Some(vec!["foo", "bar"]), pretty_str!(["foo", "bar"])),
]);
}
#[test]
fn test_write_newtype_struct() {
#[derive(Serialize, PartialEq, Debug)]
struct Newtype(BTreeMap<String, i32>);
let inner = Newtype(treemap!(String::from("inner") => 123));
let outer = treemap!(String::from("outer") => to_value(&inner).unwrap());
test_encode_ok(&[(inner, r#"{"inner":123}"#)]);
test_encode_ok(&[(outer, r#"{"outer":{"inner":123}}"#)]);
}
#[test]
fn test_deserialize_number_to_untagged_enum() {
#[derive(Eq, PartialEq, Deserialize, Debug)]
#[serde(untagged)]
enum E {
N(i64),
}
assert_eq!(E::N(0), E::deserialize(Number::from(0)).unwrap());
}
fn test_parse_ok<T>(tests: Vec<(&str, T)>)
where
T: Clone + Debug + PartialEq + ser::Serialize + de::DeserializeOwned,
{
for (s, value) in tests {
let v: T = from_str(s).unwrap();
assert_eq!(v, value.clone());
let v: T = from_slice(s.as_bytes()).unwrap();
assert_eq!(v, value.clone());
// Make sure we can deserialize into a `Value`.
let json_value: Value = from_str(s).unwrap();
assert_eq!(json_value, to_value(&value).unwrap());
// Make sure we can deserialize from a `&Value`.
let v = T::deserialize(&json_value).unwrap();
assert_eq!(v, value);
// Make sure we can deserialize from a `Value`.
let v: T = from_value(json_value.clone()).unwrap();
assert_eq!(v, value);
// Make sure we can round trip back to `Value`.
let json_value2: Value = from_value(json_value.clone()).unwrap();
assert_eq!(json_value2, json_value);
// Make sure we can fully ignore.
let twoline = s.to_owned() + "\n3735928559";
let mut de = Deserializer::from_str(&twoline);
IgnoredAny::deserialize(&mut de).unwrap();
assert_eq!(0xDEAD_BEEF, u64::deserialize(&mut de).unwrap());
// Make sure every prefix is an EOF error, except that a prefix of a
// number may be a valid number.
if !json_value.is_number() {
for (i, _) in s.trim_end().char_indices() {
assert!(from_str::<Value>(&s[..i]).unwrap_err().is_eof());
assert!(from_str::<IgnoredAny>(&s[..i]).unwrap_err().is_eof());
}
}
}
}
// For testing representations that the deserializer accepts but the serializer
// never generates. These do not survive a round-trip through Value.
fn test_parse_unusual_ok<T>(tests: Vec<(&str, T)>)
where
T: Clone + Debug + PartialEq + ser::Serialize + de::DeserializeOwned,
{
for (s, value) in tests {
let v: T = from_str(s).unwrap();
assert_eq!(v, value.clone());
let v: T = from_slice(s.as_bytes()).unwrap();
assert_eq!(v, value.clone());
}
}
macro_rules! test_parse_err {
($name:ident::<$($ty:ty),*>($arg:expr) => $expected:expr) => {
let actual = $name::<$($ty),*>($arg).unwrap_err().to_string();
assert_eq!(actual, $expected, "unexpected {} error", stringify!($name));
};
}
fn test_parse_err<T>(errors: &[(&str, &'static str)])
where
T: Debug + PartialEq + de::DeserializeOwned,
{
for &(s, err) in errors {
test_parse_err!(from_str::<T>(s) => err);
test_parse_err!(from_slice::<T>(s.as_bytes()) => err);
}
}
fn test_parse_slice_err<T>(errors: &[(&[u8], &'static str)])
where
T: Debug + PartialEq + de::DeserializeOwned,
{
for &(s, err) in errors {
test_parse_err!(from_slice::<T>(s) => err);
}
}
fn test_fromstr_parse_err<T>(errors: &[(&str, &'static str)])
where
T: Debug + PartialEq + FromStr,
<T as FromStr>::Err: ToString,
{
for &(s, err) in errors {
let actual = s.parse::<T>().unwrap_err().to_string();
assert_eq!(actual, err, "unexpected parsing error");
}
}
#[test]
fn test_parse_null() {
test_parse_err::<()>(&[
("n", "EOF while parsing a value at line 1 column 1"),
("nul", "EOF while parsing a value at line 1 column 3"),
("nulla", "trailing characters at line 1 column 5"),
]);
test_parse_ok(vec![("null", ())]);
}
#[test]
fn test_parse_bool() {
test_parse_err::<bool>(&[
("t", "EOF while parsing a value at line 1 column 1"),
("truz", "expected ident at line 1 column 4"),
("f", "EOF while parsing a value at line 1 column 1"),
("faz", "expected ident at line 1 column 3"),
("truea", "trailing characters at line 1 column 5"),
("falsea", "trailing characters at line 1 column 6"),
]);
test_parse_ok(vec![
("true", true),
(" true ", true),
("false", false),
(" false ", false),
]);
}
#[test]
fn test_parse_char() {
test_parse_err::<char>(&[
(
"\"ab\"",
"invalid value: string \"ab\", expected a character at line 1 column 4",
),
(
"10",
"invalid type: integer `10`, expected a character at line 1 column 2",
),
]);
test_parse_ok(vec![
("\"n\"", 'n'),
("\"\\\"\"", '"'),
("\"\\\\\"", '\\'),
("\"/\"", '/'),
("\"\\b\"", '\x08'),
("\"\\f\"", '\x0C'),
("\"\\n\"", '\n'),
("\"\\r\"", '\r'),
("\"\\t\"", '\t'),
("\"\\u000b\"", '\x0B'),
("\"\\u000B\"", '\x0B'),
("\"\u{3A3}\"", '\u{3A3}'),
]);
}
#[test]
fn test_parse_number_errors() {
test_parse_err::<f64>(&[
("+", "expected value at line 1 column 1"),
(".", "expected value at line 1 column 1"),
("-", "EOF while parsing a value at line 1 column 1"),
("00", "invalid number at line 1 column 2"),
("0x80", "trailing characters at line 1 column 2"),
("\\0", "expected value at line 1 column 1"),
(".0", "expected value at line 1 column 1"),
("0.", "EOF while parsing a value at line 1 column 2"),
("1.", "EOF while parsing a value at line 1 column 2"),
("1.a", "invalid number at line 1 column 3"),
("1.e1", "invalid number at line 1 column 3"),
("1e", "EOF while parsing a value at line 1 column 2"),
("1e+", "EOF while parsing a value at line 1 column 3"),
("1a", "trailing characters at line 1 column 2"),
(
"100e777777777777777777777777777",
"number out of range at line 1 column 14",
),
(
"-100e777777777777777777777777777",
"number out of range at line 1 column 15",
),
(
"1000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000", // 1e309
"number out of range at line 1 column 310",
),
(
"1000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
.0e9", // 1e309
"number out of range at line 1 column 305",
),
(
"1000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
e9", // 1e309
"number out of range at line 1 column 303",
),
]);
}
#[test]
fn test_parse_i64() {
test_parse_ok(vec![
("-2", -2),
("-1234", -1234),
(" -1234 ", -1234),
(&i64::MIN.to_string(), i64::MIN),
(&i64::MAX.to_string(), i64::MAX),
]);
}
#[test]
fn test_parse_u64() {
test_parse_ok(vec![
("0", 0u64),
("3", 3u64),
("1234", 1234),
(&u64::MAX.to_string(), u64::MAX),
]);
}
#[test]
fn test_parse_negative_zero() {
for negative_zero in &[
"-0",
"-0.0",
"-0e2",
"-0.0e2",
"-1e-400",
"-1e-4000000000000000000000000000000000000000000000000",
] {
assert!(
from_str::<f32>(negative_zero).unwrap().is_sign_negative(),
"should have been negative: {:?}",
negative_zero,
);
assert!(
from_str::<f64>(negative_zero).unwrap().is_sign_negative(),
"should have been negative: {:?}",
negative_zero,
);
}
}
#[test]
fn test_parse_f64() {
test_parse_ok(vec![
("0.0", 0.0f64),
("3.0", 3.0f64),
("3.1", 3.1),
("-1.2", -1.2),
("0.4", 0.4),
// Edge case from:
// https://github.com/serde-rs/json/issues/536#issuecomment-583714900
("2.638344616030823e-256", 2.638344616030823e-256),
]);
#[cfg(not(feature = "arbitrary_precision"))]
test_parse_ok(vec![
// With arbitrary-precision enabled, this parses as Number{"3.00"}
// but the float is Number{"3.0"}
("3.00", 3.0f64),
("0.4e5", 0.4e5),
("0.4e+5", 0.4e5),
("0.4e15", 0.4e15),
("0.4e+15", 0.4e15),
("0.4e-01", 0.4e-1),
(" 0.4e-01 ", 0.4e-1),
("0.4e-001", 0.4e-1),
("0.4e-0", 0.4e0),
("0.00e00", 0.0),
("0.00e+00", 0.0),
("0.00e-00", 0.0),
("3.5E-2147483647", 0.0),
("0.0100000000000000000001", 0.01),
(
&format!("{}", (i64::MIN as f64) - 1.0),
(i64::MIN as f64) - 1.0,
),
(
&format!("{}", (u64::MAX as f64) + 1.0),
(u64::MAX as f64) + 1.0,
),
(&format!("{}", f64::EPSILON), f64::EPSILON),
(
"0.0000000000000000000000000000000000000000000000000123e50",
1.23,
),
("100e-777777777777777777777777777", 0.0),
(
"1010101010101010101010101010101010101010",
10101010101010101010e20,
),
(
"0.1010101010101010101010101010101010101010",
0.1010101010101010101,
),
("0e1000000000000000000000000000000000000000000000", 0.0),
(
"1000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
00000000",
1e308,
),
(
"1000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
.0e8",
1e308,
),
(
"1000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
e8",
1e308,
),
(
"1000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000000000000000000\
000000000000000000e-10",
1e308,
),
]);
}
#[test]
fn test_value_as_f64() {
let v = serde_json::from_str::<Value>("1e1000");
#[cfg(not(feature = "arbitrary_precision"))]
assert!(v.is_err());
#[cfg(feature = "arbitrary_precision")]
assert_eq!(v.unwrap().as_f64(), None);
}
// Test roundtrip with some values that were not perfectly roundtripped by the
// old f64 deserializer.
#[cfg(feature = "float_roundtrip")]
#[test]
fn test_roundtrip_f64() {
for &float in &[
// Samples from quickcheck-ing roundtrip with `input: f64`. Comments
// indicate the value returned by the old deserializer.
51.24817837550540_4, // 51.2481783755054_1
-93.3113703768803_3, // -93.3113703768803_2
-36.5739948427534_36, // -36.5739948427534_4
52.31400820410624_4, // 52.31400820410624_
97.4536532003468_5, // 97.4536532003468_4
// Samples from `rng.next_u64` + `f64::from_bits` + `is_finite` filter.
2.0030397744267762e-253,
7.101215824554616e260,
1.769268377902049e74,
-1.6727517818542075e58,
3.9287532173373315e299,
] {
let json = serde_json::to_string(&float).unwrap();
let output: f64 = serde_json::from_str(&json).unwrap();
assert_eq!(float, output);
}
}
#[test]
fn test_roundtrip_f32() {
// This number has 1 ULP error if parsed via f64 and converted to f32.
// https://github.com/serde-rs/json/pull/671#issuecomment-628534468
let float = 7.038531e-26;
let json = serde_json::to_string(&float).unwrap();
let output: f32 = serde_json::from_str(&json).unwrap();
assert_eq!(float, output);
}
#[test]
fn test_serialize_char() {
let value = json!(
({
let mut map = BTreeMap::new();
map.insert('c', ());
map
})
);
assert_eq!(&Value::Null, value.get("c").unwrap());
}
#[cfg(feature = "arbitrary_precision")]
#[test]
fn test_malicious_number() {
#[derive(Serialize)]
#[serde(rename = "$serde_json::private::Number")]
struct S {
#[serde(rename = "$serde_json::private::Number")]
f: &'static str,
}
let actual = serde_json::to_value(&S { f: "not a number" })
.unwrap_err()
.to_string();
assert_eq!(actual, "invalid number at line 1 column 1");
}
#[test]
fn test_parse_number() {
test_parse_ok(vec![
("0.0", Number::from_f64(0.0f64).unwrap()),
("3.0", Number::from_f64(3.0f64).unwrap()),
("3.1", Number::from_f64(3.1).unwrap()),
("-1.2", Number::from_f64(-1.2).unwrap()),
("0.4", Number::from_f64(0.4).unwrap()),
]);
test_fromstr_parse_err::<Number>(&[
(" 1.0", "invalid number at line 1 column 1"),
("1.0 ", "invalid number at line 1 column 4"),
("\t1.0", "invalid number at line 1 column 1"),
("1.0\t", "invalid number at line 1 column 4"),
]);
#[cfg(feature = "arbitrary_precision")]
test_parse_ok(vec![
("1e999", Number::from_string_unchecked("1e999".to_owned())),
("1e+999", Number::from_string_unchecked("1e+999".to_owned())),
("-1e999", Number::from_string_unchecked("-1e999".to_owned())),
("1e-999", Number::from_string_unchecked("1e-999".to_owned())),
("1E999", Number::from_string_unchecked("1E999".to_owned())),
("1E+999", Number::from_string_unchecked("1E+999".to_owned())),
("-1E999", Number::from_string_unchecked("-1E999".to_owned())),
("1E-999", Number::from_string_unchecked("1E-999".to_owned())),
("1E+000", Number::from_string_unchecked("1E+000".to_owned())),
(
"2.3e999",
Number::from_string_unchecked("2.3e999".to_owned()),
),
(
"-2.3e999",
Number::from_string_unchecked("-2.3e999".to_owned()),
),
]);
}
#[test]
fn test_parse_string() {
test_parse_err::<String>(&[
("\"", "EOF while parsing a string at line 1 column 1"),
("\"lol", "EOF while parsing a string at line 1 column 4"),
("\"lol\"a", "trailing characters at line 1 column 6"),
(
"\"\\uD83C\\uFFFF\"",
"lone leading surrogate in hex escape at line 1 column 13",
),
(
"\"\n\"",
"control character (\\u0000-\\u001F) found while parsing a string at line 2 column 0",
),
(
"\"\x1F\"",
"control character (\\u0000-\\u001F) found while parsing a string at line 1 column 2",
),
]);
test_parse_slice_err::<String>(&[
(
&[b'"', 159, 146, 150, b'"'],
"invalid unicode code point at line 1 column 5",
),
(
&[b'"', b'\\', b'n', 159, 146, 150, b'"'],
"invalid unicode code point at line 1 column 7",
),
(
&[b'"', b'\\', b'u', 48, 48, 51],
"EOF while parsing a string at line 1 column 6",
),
(
&[b'"', b'\\', b'u', 250, 48, 51, 48, b'"'],
"invalid escape at line 1 column 4",
),
(
&[b'"', b'\\', b'u', 48, 250, 51, 48, b'"'],
"invalid escape at line 1 column 5",
),
(
&[b'"', b'\\', b'u', 48, 48, 250, 48, b'"'],
"invalid escape at line 1 column 6",
),
(
&[b'"', b'\\', b'u', 48, 48, 51, 250, b'"'],
"invalid escape at line 1 column 7",
),
(
&[b'"', b'\n', b'"'],
"control character (\\u0000-\\u001F) found while parsing a string at line 2 column 0",
),
(
&[b'"', b'\x1F', b'"'],
"control character (\\u0000-\\u001F) found while parsing a string at line 1 column 2",
),
]);
test_parse_ok(vec![
("\"\"", String::new()),
("\"foo\"", "foo".to_string()),
(" \"foo\" ", "foo".to_string()),
("\"\\\"\"", "\"".to_string()),
("\"\\b\"", "\x08".to_string()),
("\"\\n\"", "\n".to_string()),
("\"\\r\"", "\r".to_string()),
("\"\\t\"", "\t".to_string()),
("\"\\u12ab\"", "\u{12ab}".to_string()),
("\"\\uAB12\"", "\u{AB12}".to_string()),
("\"\\uD83C\\uDF95\"", "\u{1F395}".to_string()),
]);
}
#[test]
fn test_parse_list() {
test_parse_err::<Vec<f64>>(&[
("[", "EOF while parsing a list at line 1 column 1"),
("[ ", "EOF while parsing a list at line 1 column 2"),
("[1", "EOF while parsing a list at line 1 column 2"),
("[1,", "EOF while parsing a value at line 1 column 3"),
("[1,]", "trailing comma at line 1 column 4"),
("[1 2]", "expected `,` or `]` at line 1 column 4"),
("[]a", "trailing characters at line 1 column 3"),
]);
test_parse_ok(vec![
("[]", vec![]),
("[ ]", vec![]),
("[null]", vec![()]),
(" [ null ] ", vec![()]),
]);
test_parse_ok(vec![("[true]", vec![true])]);
test_parse_ok(vec![("[3,1]", vec![3u64, 1]), (" [ 3 , 1 ] ", vec![3, 1])]);
test_parse_ok(vec![("[[3], [1, 2]]", vec![vec![3u64], vec![1, 2]])]);
test_parse_ok(vec![("[1]", (1u64,))]);
test_parse_ok(vec![("[1, 2]", (1u64, 2u64))]);
test_parse_ok(vec![("[1, 2, 3]", (1u64, 2u64, 3u64))]);
test_parse_ok(vec![("[1, [2, 3]]", (1u64, (2u64, 3u64)))]);
}
#[test]
fn test_parse_object() {
test_parse_err::<BTreeMap<String, u32>>(&[
("{", "EOF while parsing an object at line 1 column 1"),
("{ ", "EOF while parsing an object at line 1 column 2"),
("{1", "key must be a string at line 1 column 2"),
("{ \"a\"", "EOF while parsing an object at line 1 column 5"),
("{\"a\"", "EOF while parsing an object at line 1 column 4"),
("{\"a\" ", "EOF while parsing an object at line 1 column 5"),
("{\"a\" 1", "expected `:` at line 1 column 6"),
("{\"a\":", "EOF while parsing a value at line 1 column 5"),
("{\"a\":1", "EOF while parsing an object at line 1 column 6"),
("{\"a\":1 1", "expected `,` or `}` at line 1 column 8"),
("{\"a\":1,", "EOF while parsing a value at line 1 column 7"),
("{}a", "trailing characters at line 1 column 3"),
]);
test_parse_ok(vec![
("{}", treemap!()),
("{ }", treemap!()),
("{\"a\":3}", treemap!("a".to_string() => 3u64)),
("{ \"a\" : 3 }", treemap!("a".to_string() => 3)),
(
"{\"a\":3,\"b\":4}",
treemap!("a".to_string() => 3, "b".to_string() => 4),
),
(
" { \"a\" : 3 , \"b\" : 4 } ",
treemap!("a".to_string() => 3, "b".to_string() => 4),
),
]);
test_parse_ok(vec![(
"{\"a\": {\"b\": 3, \"c\": 4}}",
treemap!(
"a".to_string() => treemap!(
"b".to_string() => 3u64,
"c".to_string() => 4,
),
),
)]);
test_parse_ok(vec![("{\"c\":null}", treemap!('c' => ()))]);
}
#[test]
fn test_parse_struct() {
test_parse_err::<Outer>(&[
(
"5",
"invalid type: integer `5`, expected struct Outer at line 1 column 1",
),
(
"\"hello\"",
"invalid type: string \"hello\", expected struct Outer at line 1 column 7",
),
(
"{\"inner\": true}",
"invalid type: boolean `true`, expected a sequence at line 1 column 14",
),
("{}", "missing field `inner` at line 1 column 2"),
(
r#"{"inner": [{"b": 42, "c": []}]}"#,
"missing field `a` at line 1 column 29",
),
]);
test_parse_ok(vec![
(
"{
\"inner\": []
}",
Outer { inner: vec![] },
),
(
"{
\"inner\": [
{ \"a\": null, \"b\": 2, \"c\": [\"abc\", \"xyz\"] }
]
}",
Outer {
inner: vec![Inner {
a: (),
b: 2,
c: vec!["abc".to_string(), "xyz".to_string()],
}],
},
),
]);
let v: Outer = from_str(
"[
[
[ null, 2, [\"abc\", \"xyz\"] ]
]
]",
)
.unwrap();
assert_eq!(
v,
Outer {
inner: vec![Inner {
a: (),
b: 2,
c: vec!["abc".to_string(), "xyz".to_string()],
}],
}
);
let j = json!([null, 2, []]);
Inner::deserialize(&j).unwrap();
Inner::deserialize(j).unwrap();
}
#[test]
fn test_parse_option() {
test_parse_ok(vec![
("null", None::<String>),
("\"jodhpurs\"", Some("jodhpurs".to_string())),
]);
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
struct Foo {
x: Option<isize>,
}
let value: Foo = from_str("{}").unwrap();
assert_eq!(value, Foo { x: None });
test_parse_ok(vec![
("{\"x\": null}", Foo { x: None }),
("{\"x\": 5}", Foo { x: Some(5) }),
]);
}
#[test]
fn test_parse_enum_errors() {
test_parse_err::<Animal>(
&[
("{}", "expected value at line 1 column 2"),
("[]", "expected value at line 1 column 1"),
("\"unknown\"",
"unknown variant `unknown`, expected one of `Dog`, `Frog`, `Cat`, `AntHive` at line 1 column 9"),
("{\"unknown\":null}",
"unknown variant `unknown`, expected one of `Dog`, `Frog`, `Cat`, `AntHive` at line 1 column 10"),
("{\"Dog\":", "EOF while parsing a value at line 1 column 7"),
("{\"Dog\":}", "expected value at line 1 column 8"),
("{\"Dog\":{}}", "invalid type: map, expected unit at line 1 column 7"),
("\"Frog\"", "invalid type: unit variant, expected tuple variant"),
("\"Frog\" 0 ", "invalid type: unit variant, expected tuple variant"),
("{\"Frog\":{}}",
"invalid type: map, expected tuple variant Animal::Frog at line 1 column 8"),
("{\"Cat\":[]}", "invalid length 0, expected struct variant Animal::Cat with 2 elements at line 1 column 9"),
("{\"Cat\":[0]}", "invalid length 1, expected struct variant Animal::Cat with 2 elements at line 1 column 10"),
("{\"Cat\":[0, \"\", 2]}", "trailing characters at line 1 column 16"),
("{\"Cat\":{\"age\": 5, \"name\": \"Kate\", \"foo\":\"bar\"}",
"unknown field `foo`, expected `age` or `name` at line 1 column 39"),
// JSON does not allow trailing commas in data structures
("{\"Cat\":[0, \"Kate\",]}", "trailing comma at line 1 column 19"),
("{\"Cat\":{\"age\": 2, \"name\": \"Kate\",}}",
"trailing comma at line 1 column 34"),
],
);
}
#[test]
fn test_parse_enum() {
test_parse_ok(vec![
("\"Dog\"", Animal::Dog),
(" \"Dog\" ", Animal::Dog),
(
"{\"Frog\":[\"Henry\",[]]}",
Animal::Frog("Henry".to_string(), vec![]),
),
(
" { \"Frog\": [ \"Henry\" , [ 349, 102 ] ] } ",
Animal::Frog("Henry".to_string(), vec![349, 102]),
),
(
"{\"Cat\": {\"age\": 5, \"name\": \"Kate\"}}",
Animal::Cat {
age: 5,
name: "Kate".to_string(),
},
),
(
" { \"Cat\" : { \"age\" : 5 , \"name\" : \"Kate\" } } ",
Animal::Cat {
age: 5,
name: "Kate".to_string(),
},
),
(
" { \"AntHive\" : [\"Bob\", \"Stuart\"] } ",
Animal::AntHive(vec!["Bob".to_string(), "Stuart".to_string()]),
),
]);
test_parse_unusual_ok(vec![
("{\"Dog\":null}", Animal::Dog),
(" { \"Dog\" : null } ", Animal::Dog),
]);
test_parse_ok(vec![(
concat!(
"{",
" \"a\": \"Dog\",",
" \"b\": {\"Frog\":[\"Henry\", []]}",
"}"
),
treemap!(
"a".to_string() => Animal::Dog,
"b".to_string() => Animal::Frog("Henry".to_string(), vec![]),
),
)]);
}
#[test]
fn test_parse_trailing_whitespace() {
test_parse_ok(vec![
("[1, 2] ", vec![1u64, 2]),
("[1, 2]\n", vec![1, 2]),
("[1, 2]\t", vec![1, 2]),
("[1, 2]\t \n", vec![1, 2]),
]);
}
#[test]
fn test_multiline_errors() {
test_parse_err::<BTreeMap<String, String>>(&[(
"{\n \"foo\":\n \"bar\"",
"EOF while parsing an object at line 3 column 6",
)]);
}
#[test]
fn test_missing_option_field() {
#[derive(Debug, PartialEq, Deserialize)]
struct Foo {
x: Option<u32>,
}
let value: Foo = from_str("{}").unwrap();
assert_eq!(value, Foo { x: None });
let value: Foo = from_str("{\"x\": 5}").unwrap();
assert_eq!(value, Foo { x: Some(5) });
let value: Foo = from_value(json!({})).unwrap();
assert_eq!(value, Foo { x: None });
let value: Foo = from_value(json!({"x": 5})).unwrap();
assert_eq!(value, Foo { x: Some(5) });
}
#[test]
fn test_missing_nonoption_field() {
#[derive(Debug, PartialEq, Deserialize)]
struct Foo {
x: u32,
}
test_parse_err::<Foo>(&[("{}", "missing field `x` at line 1 column 2")]);
}
#[test]
fn test_missing_renamed_field() {
#[derive(Debug, PartialEq, Deserialize)]
struct Foo {
#[serde(rename = "y")]
x: Option<u32>,
}
let value: Foo = from_str("{}").unwrap();
assert_eq!(value, Foo { x: None });
let value: Foo = from_str("{\"y\": 5}").unwrap();
assert_eq!(value, Foo { x: Some(5) });
let value: Foo = from_value(json!({})).unwrap();
assert_eq!(value, Foo { x: None });
let value: Foo = from_value(json!({"y": 5})).unwrap();
assert_eq!(value, Foo { x: Some(5) });
}
#[test]
fn test_serialize_seq_with_no_len() {
#[derive(Clone, Debug, PartialEq)]
struct MyVec<T>(Vec<T>);
impl<T> ser::Serialize for MyVec<T>
where
T: ser::Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
let mut seq = serializer.serialize_seq(None)?;
for elem in &self.0 {
seq.serialize_element(elem)?;
}
seq.end()
}
}
struct Visitor<T> {
marker: PhantomData<MyVec<T>>,
}
impl<'de, T> de::Visitor<'de> for Visitor<T>
where
T: de::Deserialize<'de>,
{
type Value = MyVec<T>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("array")
}
fn visit_unit<E>(self) -> Result<MyVec<T>, E>
where
E: de::Error,
{
Ok(MyVec(Vec::new()))
}
fn visit_seq<V>(self, mut visitor: V) -> Result<MyVec<T>, V::Error>
where
V: de::SeqAccess<'de>,
{
let mut values = Vec::new();
while let Some(value) = visitor.next_element()? {
values.push(value);
}
Ok(MyVec(values))
}
}
impl<'de, T> de::Deserialize<'de> for MyVec<T>
where
T: de::Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<MyVec<T>, D::Error>
where
D: de::Deserializer<'de>,
{
deserializer.deserialize_map(Visitor {
marker: PhantomData,
})
}
}
let mut vec = Vec::new();
vec.push(MyVec(Vec::new()));
vec.push(MyVec(Vec::new()));
let vec: MyVec<MyVec<u32>> = MyVec(vec);
test_encode_ok(&[(vec.clone(), "[[],[]]")]);
let s = to_string_pretty(&vec).unwrap();
let expected = pretty_str!([[], []]);
assert_eq!(s, expected);
}
#[test]
fn test_serialize_map_with_no_len() {
#[derive(Clone, Debug, PartialEq)]
struct MyMap<K, V>(BTreeMap<K, V>);
impl<K, V> ser::Serialize for MyMap<K, V>
where
K: ser::Serialize + Ord,
V: ser::Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
let mut map = serializer.serialize_map(None)?;
for (k, v) in &self.0 {
map.serialize_entry(k, v)?;
}
map.end()
}
}
struct Visitor<K, V> {
marker: PhantomData<MyMap<K, V>>,
}
impl<'de, K, V> de::Visitor<'de> for Visitor<K, V>
where
K: de::Deserialize<'de> + Eq + Ord,
V: de::Deserialize<'de>,
{
type Value = MyMap<K, V>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("map")
}
fn visit_unit<E>(self) -> Result<MyMap<K, V>, E>
where
E: de::Error,
{
Ok(MyMap(BTreeMap::new()))
}
fn visit_map<Visitor>(self, mut visitor: Visitor) -> Result<MyMap<K, V>, Visitor::Error>
where
Visitor: de::MapAccess<'de>,
{
let mut values = BTreeMap::new();
while let Some((key, value)) = visitor.next_entry()? {
values.insert(key, value);
}
Ok(MyMap(values))
}
}
impl<'de, K, V> de::Deserialize<'de> for MyMap<K, V>
where
K: de::Deserialize<'de> + Eq + Ord,
V: de::Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<MyMap<K, V>, D::Error>
where
D: de::Deserializer<'de>,
{
deserializer.deserialize_map(Visitor {
marker: PhantomData,
})
}
}
let mut map = BTreeMap::new();
map.insert("a", MyMap(BTreeMap::new()));
map.insert("b", MyMap(BTreeMap::new()));
let map: MyMap<_, MyMap<u32, u32>> = MyMap(map);
test_encode_ok(&[(map.clone(), "{\"a\":{},\"b\":{}}")]);
let s = to_string_pretty(&map).unwrap();
let expected = pretty_str!({
"a": {},
"b": {}
});
assert_eq!(s, expected);
}
#[cfg(not(miri))]
#[test]
fn test_deserialize_from_stream() {
use serde_json::to_writer;
use std::net::{TcpListener, TcpStream};
use std::thread;
#[derive(Debug, PartialEq, Serialize, Deserialize)]
struct Message {
message: String,
}
let l = TcpListener::bind("localhost:20000").unwrap();
thread::spawn(|| {
let l = l;
for stream in l.incoming() {
let mut stream = stream.unwrap();
let read_stream = stream.try_clone().unwrap();
let mut de = Deserializer::from_reader(read_stream);
let request = Message::deserialize(&mut de).unwrap();
let response = Message {
message: request.message,
};
to_writer(&mut stream, &response).unwrap();
}
});
let mut stream = TcpStream::connect("localhost:20000").unwrap();
let request = Message {
message: "hi there".to_string(),
};
to_writer(&mut stream, &request).unwrap();
let mut de = Deserializer::from_reader(stream);
let response = Message::deserialize(&mut de).unwrap();
assert_eq!(request, response);
}
#[test]
fn test_serialize_rejects_adt_keys() {
let map = treemap!(
Some("a") => 2,
Some("b") => 4,
None => 6,
);
let err = to_vec(&map).unwrap_err();
assert_eq!(err.to_string(), "key must be a string");
}
#[test]
fn test_bytes_ser() {
let buf = vec![];
let bytes = Bytes::new(&buf);
assert_eq!(to_string(&bytes).unwrap(), "[]".to_string());
let buf = vec![1, 2, 3];
let bytes = Bytes::new(&buf);
assert_eq!(to_string(&bytes).unwrap(), "[1,2,3]".to_string());
}
#[test]
fn test_byte_buf_ser() {
let bytes = ByteBuf::new();
assert_eq!(to_string(&bytes).unwrap(), "[]".to_string());
let bytes = ByteBuf::from(vec![1, 2, 3]);
assert_eq!(to_string(&bytes).unwrap(), "[1,2,3]".to_string());
}
#[test]
fn test_byte_buf_de() {
let bytes = ByteBuf::new();
let v: ByteBuf = from_str("[]").unwrap();
assert_eq!(v, bytes);
let bytes = ByteBuf::from(vec![1, 2, 3]);
let v: ByteBuf = from_str("[1, 2, 3]").unwrap();
assert_eq!(v, bytes);
}
#[test]
fn test_byte_buf_de_lone_surrogate() {
let bytes = ByteBuf::from(vec![237, 160, 188]);
let v: ByteBuf = from_str(r#""\ud83c""#).unwrap();
assert_eq!(v, bytes);
let bytes = ByteBuf::from(vec![237, 160, 188, 10]);
let v: ByteBuf = from_str(r#""\ud83c\n""#).unwrap();
assert_eq!(v, bytes);
let bytes = ByteBuf::from(vec![237, 160, 188, 32]);
let v: ByteBuf = from_str(r#""\ud83c ""#).unwrap();
assert_eq!(v, bytes);
let bytes = ByteBuf::from(vec![237, 176, 129]);
let v: ByteBuf = from_str(r#""\udc01""#).unwrap();
assert_eq!(v, bytes);
let res = from_str::<ByteBuf>(r#""\ud83c\!""#);
assert!(res.is_err());
let res = from_str::<ByteBuf>(r#""\ud83c\u""#);
assert!(res.is_err());
let res = from_str::<ByteBuf>(r#""\ud83c\ud83c""#);
assert!(res.is_err());
}
#[cfg(feature = "raw_value")]
#[test]
fn test_raw_de_lone_surrogate() {
use serde_json::value::RawValue;
assert!(from_str::<Box<RawValue>>(r#""\ud83c""#).is_ok());
assert!(from_str::<Box<RawValue>>(r#""\ud83c\n""#).is_ok());
assert!(from_str::<Box<RawValue>>(r#""\ud83c ""#).is_ok());
assert!(from_str::<Box<RawValue>>(r#""\udc01 ""#).is_ok());
assert!(from_str::<Box<RawValue>>(r#""\udc01\!""#).is_err());
assert!(from_str::<Box<RawValue>>(r#""\udc01\u""#).is_err());
assert!(from_str::<Box<RawValue>>(r#""\ud83c\ud83c""#).is_ok());
}
#[test]
fn test_byte_buf_de_multiple() {
let s: Vec<ByteBuf> = from_str(r#"["ab\nc", "cd\ne"]"#).unwrap();
let a = ByteBuf::from(b"ab\nc".to_vec());
let b = ByteBuf::from(b"cd\ne".to_vec());
assert_eq!(vec![a, b], s);
}
#[test]
fn test_json_pointer() {
// Test case taken from https://tools.ietf.org/html/rfc6901#page-5
let data: Value = from_str(
r#"{
"foo": ["bar", "baz"],
"": 0,
"a/b": 1,
"c%d": 2,
"e^f": 3,
"g|h": 4,
"i\\j": 5,
"k\"l": 6,
" ": 7,
"m~n": 8
}"#,
)
.unwrap();
assert_eq!(data.pointer("").unwrap(), &data);
assert_eq!(data.pointer("/foo").unwrap(), &json!(["bar", "baz"]));
assert_eq!(data.pointer("/foo/0").unwrap(), &json!("bar"));
assert_eq!(data.pointer("/").unwrap(), &json!(0));
assert_eq!(data.pointer("/a~1b").unwrap(), &json!(1));
assert_eq!(data.pointer("/c%d").unwrap(), &json!(2));
assert_eq!(data.pointer("/e^f").unwrap(), &json!(3));
assert_eq!(data.pointer("/g|h").unwrap(), &json!(4));
assert_eq!(data.pointer("/i\\j").unwrap(), &json!(5));
assert_eq!(data.pointer("/k\"l").unwrap(), &json!(6));
assert_eq!(data.pointer("/ ").unwrap(), &json!(7));
assert_eq!(data.pointer("/m~0n").unwrap(), &json!(8));
// Invalid pointers
assert!(data.pointer("/unknown").is_none());
assert!(data.pointer("/e^f/ertz").is_none());
assert!(data.pointer("/foo/00").is_none());
assert!(data.pointer("/foo/01").is_none());
}
#[test]
fn test_json_pointer_mut() {
// Test case taken from https://tools.ietf.org/html/rfc6901#page-5
let mut data: Value = from_str(
r#"{
"foo": ["bar", "baz"],
"": 0,
"a/b": 1,
"c%d": 2,
"e^f": 3,
"g|h": 4,
"i\\j": 5,
"k\"l": 6,
" ": 7,
"m~n": 8
}"#,
)
.unwrap();
// Basic pointer checks
assert_eq!(data.pointer_mut("/foo").unwrap(), &json!(["bar", "baz"]));
assert_eq!(data.pointer_mut("/foo/0").unwrap(), &json!("bar"));
assert_eq!(data.pointer_mut("/").unwrap(), 0);
assert_eq!(data.pointer_mut("/a~1b").unwrap(), 1);
assert_eq!(data.pointer_mut("/c%d").unwrap(), 2);
assert_eq!(data.pointer_mut("/e^f").unwrap(), 3);
assert_eq!(data.pointer_mut("/g|h").unwrap(), 4);
assert_eq!(data.pointer_mut("/i\\j").unwrap(), 5);
assert_eq!(data.pointer_mut("/k\"l").unwrap(), 6);
assert_eq!(data.pointer_mut("/ ").unwrap(), 7);
assert_eq!(data.pointer_mut("/m~0n").unwrap(), 8);
// Invalid pointers
assert!(data.pointer_mut("/unknown").is_none());
assert!(data.pointer_mut("/e^f/ertz").is_none());
assert!(data.pointer_mut("/foo/00").is_none());
assert!(data.pointer_mut("/foo/01").is_none());
// Mutable pointer checks
*data.pointer_mut("/").unwrap() = 100.into();
assert_eq!(data.pointer("/").unwrap(), 100);
*data.pointer_mut("/foo/0").unwrap() = json!("buzz");
assert_eq!(data.pointer("/foo/0").unwrap(), &json!("buzz"));
// Example of ownership stealing
assert_eq!(
data.pointer_mut("/a~1b")
.map(|m| mem::replace(m, json!(null)))
.unwrap(),
1
);
assert_eq!(data.pointer("/a~1b").unwrap(), &json!(null));
// Need to compare against a clone so we don't anger the borrow checker
// by taking out two references to a mutable value
let mut d2 = data.clone();
assert_eq!(data.pointer_mut("").unwrap(), &mut d2);
}
#[test]
fn test_stack_overflow() {
let brackets: String = iter::repeat('[')
.take(127)
.chain(iter::repeat(']').take(127))
.collect();
let _: Value = from_str(&brackets).unwrap();
let brackets = "[".repeat(129);
test_parse_err::<Value>(&[(&brackets, "recursion limit exceeded at line 1 column 128")]);
}
#[test]
#[cfg(feature = "unbounded_depth")]
fn test_disable_recursion_limit() {
let brackets: String = iter::repeat('[')
.take(140)
.chain(iter::repeat(']').take(140))
.collect();
let mut deserializer = Deserializer::from_str(&brackets);
deserializer.disable_recursion_limit();
Value::deserialize(&mut deserializer).unwrap();
}
#[test]
fn test_integer_key() {
// map with integer keys
let map = treemap!(
1 => 2,
-1 => 6,
);
let j = r#"{"-1":6,"1":2}"#;
test_encode_ok(&[(&map, j)]);
test_parse_ok(vec![(j, map)]);
test_parse_err::<BTreeMap<i32, ()>>(&[
(
r#"{"x":null}"#,
"invalid value: expected key to be a number in quotes at line 1 column 2",
),
(
r#"{" 123":null}"#,
"invalid value: expected key to be a number in quotes at line 1 column 2",
),
(r#"{"123 ":null}"#, "expected `\"` at line 1 column 6"),
]);
let err = from_value::<BTreeMap<i32, ()>>(json!({" 123":null})).unwrap_err();
assert_eq!(
err.to_string(),
"invalid value: expected key to be a number in quotes",
);
let err = from_value::<BTreeMap<i32, ()>>(json!({"123 ":null})).unwrap_err();
assert_eq!(
err.to_string(),
"invalid value: expected key to be a number in quotes",
);
}
#[test]
fn test_integer128_key() {
let map = treemap! {
100000000000000000000000000000000000000u128 => (),
};
let j = r#"{"100000000000000000000000000000000000000":null}"#;
assert_eq!(to_string(&map).unwrap(), j);
assert_eq!(from_str::<BTreeMap<u128, ()>>(j).unwrap(), map);
}
#[test]
fn test_float_key() {
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone)]
struct Float;
impl Serialize for Float {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_f32(1.23)
}
}
impl<'de> Deserialize<'de> for Float {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: de::Deserializer<'de>,
{
f32::deserialize(deserializer).map(|_| Float)
}
}
// map with float key
let map = treemap!(Float => "x".to_owned());
let j = r#"{"1.23":"x"}"#;
test_encode_ok(&[(&map, j)]);
test_parse_ok(vec![(j, map)]);
let j = r#"{"x": null}"#;
test_parse_err::<BTreeMap<Float, ()>>(&[(
j,
"invalid value: expected key to be a number in quotes at line 1 column 2",
)]);
}
#[test]
fn test_deny_non_finite_f32_key() {
// We store float bits so that we can derive Ord, and other traits. In a
// real context the code might involve a crate like ordered-float.
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone)]
struct F32Bits(u32);
impl Serialize for F32Bits {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_f32(f32::from_bits(self.0))
}
}
let map = treemap!(F32Bits(f32::INFINITY.to_bits()) => "x".to_owned());
assert!(serde_json::to_string(&map).is_err());
assert!(serde_json::to_value(map).is_err());
let map = treemap!(F32Bits(f32::NEG_INFINITY.to_bits()) => "x".to_owned());
assert!(serde_json::to_string(&map).is_err());
assert!(serde_json::to_value(map).is_err());
let map = treemap!(F32Bits(f32::NAN.to_bits()) => "x".to_owned());
assert!(serde_json::to_string(&map).is_err());
assert!(serde_json::to_value(map).is_err());
}
#[test]
fn test_deny_non_finite_f64_key() {
// We store float bits so that we can derive Ord, and other traits. In a
// real context the code might involve a crate like ordered-float.
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone)]
struct F64Bits(u64);
impl Serialize for F64Bits {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_f64(f64::from_bits(self.0))
}
}
let map = treemap!(F64Bits(f64::INFINITY.to_bits()) => "x".to_owned());
assert!(serde_json::to_string(&map).is_err());
assert!(serde_json::to_value(map).is_err());
let map = treemap!(F64Bits(f64::NEG_INFINITY.to_bits()) => "x".to_owned());
assert!(serde_json::to_string(&map).is_err());
assert!(serde_json::to_value(map).is_err());
let map = treemap!(F64Bits(f64::NAN.to_bits()) => "x".to_owned());
assert!(serde_json::to_string(&map).is_err());
assert!(serde_json::to_value(map).is_err());
}
#[test]
fn test_boolean_key() {
let map = treemap!(false => 0, true => 1);
let j = r#"{"false":0,"true":1}"#;
test_encode_ok(&[(&map, j)]);
test_parse_ok(vec![(j, map)]);
}
#[test]
fn test_borrowed_key() {
let map: BTreeMap<&str, ()> = from_str("{\"borrowed\":null}").unwrap();
let expected = treemap! { "borrowed" => () };
assert_eq!(map, expected);
#[derive(Deserialize, Debug, Ord, PartialOrd, Eq, PartialEq)]
struct NewtypeStr<'a>(&'a str);
let map: BTreeMap<NewtypeStr, ()> = from_str("{\"borrowed\":null}").unwrap();
let expected = treemap! { NewtypeStr("borrowed") => () };
assert_eq!(map, expected);
}
#[test]
fn test_effectively_string_keys() {
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Serialize, Deserialize)]
enum Enum {
One,
Two,
}
let map = treemap! {
Enum::One => 1,
Enum::Two => 2,
};
let expected = r#"{"One":1,"Two":2}"#;
test_encode_ok(&[(&map, expected)]);
test_parse_ok(vec![(expected, map)]);
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Serialize, Deserialize)]
struct Wrapper(String);
let map = treemap! {
Wrapper("zero".to_owned()) => 0,
Wrapper("one".to_owned()) => 1,
};
let expected = r#"{"one":1,"zero":0}"#;
test_encode_ok(&[(&map, expected)]);
test_parse_ok(vec![(expected, map)]);
}
#[test]
fn test_json_macro() {
// This is tricky because the <...> is not a single TT and the comma inside
// looks like an array element separator.
let _ = json!([
<Result<(), ()> as Clone>::clone(&Ok(())),
<Result<(), ()> as Clone>::clone(&Err(()))
]);
// Same thing but in the map values.
let _ = json!({
"ok": <Result<(), ()> as Clone>::clone(&Ok(())),
"err": <Result<(), ()> as Clone>::clone(&Err(()))
});
// It works in map keys but only if they are parenthesized.
let _ = json!({
(<Result<&str, ()> as Clone>::clone(&Ok("")).unwrap()): "ok",
(<Result<(), &str> as Clone>::clone(&Err("")).unwrap_err()): "err"
});
#[deny(unused_results)]
let _ = json!({ "architecture": [true, null] });
}
#[test]
fn issue_220() {
#[derive(Debug, PartialEq, Eq, Deserialize)]
enum E {
V(u8),
}
assert!(from_str::<E>(r#" "V"0 "#).is_err());
assert_eq!(from_str::<E>(r#"{"V": 0}"#).unwrap(), E::V(0));
}
macro_rules! number_partialeq_ok {
($($n:expr)*) => {
$(
let value = to_value($n).unwrap();
let s = $n.to_string();
assert_eq!(value, $n);
assert_eq!($n, value);
assert_ne!(value, s);
)*
}
}
#[test]
fn test_partialeq_number() {
number_partialeq_ok!(0 1 100
i8::MIN i8::MAX i16::MIN i16::MAX i32::MIN i32::MAX i64::MIN i64::MAX
u8::MIN u8::MAX u16::MIN u16::MAX u32::MIN u32::MAX u64::MIN u64::MAX
f32::MIN f32::MAX f32::MIN_EXP f32::MAX_EXP f32::MIN_POSITIVE
f64::MIN f64::MAX f64::MIN_EXP f64::MAX_EXP f64::MIN_POSITIVE
f32::consts::E f32::consts::PI f32::consts::LN_2 f32::consts::LOG2_E
f64::consts::E f64::consts::PI f64::consts::LN_2 f64::consts::LOG2_E
);
}
#[test]
#[cfg(integer128)]
#[cfg(feature = "arbitrary_precision")]
fn test_partialeq_integer128() {
number_partialeq_ok!(i128::MIN i128::MAX u128::MIN u128::MAX)
}
#[test]
fn test_partialeq_string() {
let v = to_value("42").unwrap();
assert_eq!(v, "42");
assert_eq!("42", v);
assert_ne!(v, 42);
assert_eq!(v, String::from("42"));
assert_eq!(String::from("42"), v);
}
#[test]
fn test_partialeq_bool() {
let v = to_value(true).unwrap();
assert_eq!(v, true);
assert_eq!(true, v);
assert_ne!(v, false);
assert_ne!(v, "true");
assert_ne!(v, 1);
assert_ne!(v, 0);
}
struct FailReader(io::ErrorKind);
impl io::Read for FailReader {
fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
Err(io::Error::new(self.0, "oh no!"))
}
}
#[test]
fn test_category() {
assert!(from_str::<String>("123").unwrap_err().is_data());
assert!(from_str::<String>("]").unwrap_err().is_syntax());
assert!(from_str::<String>("").unwrap_err().is_eof());
assert!(from_str::<String>("\"").unwrap_err().is_eof());
assert!(from_str::<String>("\"\\").unwrap_err().is_eof());
assert!(from_str::<String>("\"\\u").unwrap_err().is_eof());
assert!(from_str::<String>("\"\\u0").unwrap_err().is_eof());
assert!(from_str::<String>("\"\\u00").unwrap_err().is_eof());
assert!(from_str::<String>("\"\\u000").unwrap_err().is_eof());
assert!(from_str::<Vec<usize>>("[").unwrap_err().is_eof());
assert!(from_str::<Vec<usize>>("[0").unwrap_err().is_eof());
assert!(from_str::<Vec<usize>>("[0,").unwrap_err().is_eof());
assert!(from_str::<BTreeMap<String, usize>>("{")
.unwrap_err()
.is_eof());
assert!(from_str::<BTreeMap<String, usize>>("{\"k\"")
.unwrap_err()
.is_eof());
assert!(from_str::<BTreeMap<String, usize>>("{\"k\":")
.unwrap_err()
.is_eof());
assert!(from_str::<BTreeMap<String, usize>>("{\"k\":0")
.unwrap_err()
.is_eof());
assert!(from_str::<BTreeMap<String, usize>>("{\"k\":0,")
.unwrap_err()
.is_eof());
let fail = FailReader(io::ErrorKind::NotConnected);
assert!(from_reader::<_, String>(fail).unwrap_err().is_io());
}
#[test]
// Clippy false positive: https://github.com/Manishearth/rust-clippy/issues/292
#[allow(clippy::needless_lifetimes)]
fn test_into_io_error() {
fn io_error<'de, T: Deserialize<'de> + Debug>(j: &'static str) -> io::Error {
from_str::<T>(j).unwrap_err().into()
}
assert_eq!(
io_error::<String>("\"\\u").kind(),
io::ErrorKind::UnexpectedEof
);
assert_eq!(io_error::<String>("0").kind(), io::ErrorKind::InvalidData);
assert_eq!(io_error::<String>("]").kind(), io::ErrorKind::InvalidData);
let fail = FailReader(io::ErrorKind::NotConnected);
let io_err: io::Error = from_reader::<_, u8>(fail).unwrap_err().into();
assert_eq!(io_err.kind(), io::ErrorKind::NotConnected);
}
#[test]
fn test_borrow() {
let s: &str = from_str("\"borrowed\"").unwrap();
assert_eq!("borrowed", s);
let s: &str = from_slice(b"\"borrowed\"").unwrap();
assert_eq!("borrowed", s);
}
#[test]
fn null_invalid_type() {
let err = serde_json::from_str::<String>("null").unwrap_err();
assert_eq!(
format!("{}", err),
String::from("invalid type: null, expected a string at line 1 column 4")
);
}
#[test]
fn test_integer128() {
let signed = &[i128::min_value(), -1, 0, 1, i128::max_value()];
let unsigned = &[0, 1, u128::max_value()];
for integer128 in signed {
let expected = integer128.to_string();
assert_eq!(to_string(integer128).unwrap(), expected);
assert_eq!(from_str::<i128>(&expected).unwrap(), *integer128);
}
for integer128 in unsigned {
let expected = integer128.to_string();
assert_eq!(to_string(integer128).unwrap(), expected);
assert_eq!(from_str::<u128>(&expected).unwrap(), *integer128);
}
test_parse_err::<i128>(&[
(
"-170141183460469231731687303715884105729",
"number out of range at line 1 column 40",
),
(
"170141183460469231731687303715884105728",
"number out of range at line 1 column 39",
),
]);
test_parse_err::<u128>(&[
("-1", "number out of range at line 1 column 1"),
(
"340282366920938463463374607431768211456",
"number out of range at line 1 column 39",
),
]);
}
#[test]
fn test_integer128_to_value() {
let signed = &[i128::from(i64::min_value()), i128::from(u64::max_value())];
let unsigned = &[0, u128::from(u64::max_value())];
for integer128 in signed {
let expected = integer128.to_string();
assert_eq!(to_value(integer128).unwrap().to_string(), expected);
}
for integer128 in unsigned {
let expected = integer128.to_string();
assert_eq!(to_value(integer128).unwrap().to_string(), expected);
}
if !cfg!(feature = "arbitrary_precision") {
let err = to_value(u128::from(u64::max_value()) + 1).unwrap_err();
assert_eq!(err.to_string(), "number out of range");
}
}
#[cfg(feature = "raw_value")]
#[test]
fn test_borrowed_raw_value() {
#[derive(Serialize, Deserialize)]
struct Wrapper<'a> {
a: i8,
#[serde(borrow)]
b: &'a RawValue,
c: i8,
}
let wrapper_from_str: Wrapper =
serde_json::from_str(r#"{"a": 1, "b": {"foo": 2}, "c": 3}"#).unwrap();
assert_eq!(r#"{"foo": 2}"#, wrapper_from_str.b.get());
let wrapper_to_string = serde_json::to_string(&wrapper_from_str).unwrap();
assert_eq!(r#"{"a":1,"b":{"foo": 2},"c":3}"#, wrapper_to_string);
let wrapper_to_value = serde_json::to_value(&wrapper_from_str).unwrap();
assert_eq!(json!({"a": 1, "b": {"foo": 2}, "c": 3}), wrapper_to_value);
let array_from_str: Vec<&RawValue> =
serde_json::from_str(r#"["a", 42, {"foo": "bar"}, null]"#).unwrap();
assert_eq!(r#""a""#, array_from_str[0].get());
assert_eq!(r#"42"#, array_from_str[1].get());
assert_eq!(r#"{"foo": "bar"}"#, array_from_str[2].get());
assert_eq!(r#"null"#, array_from_str[3].get());
let array_to_string = serde_json::to_string(&array_from_str).unwrap();
assert_eq!(r#"["a",42,{"foo": "bar"},null]"#, array_to_string);
}
#[cfg(feature = "raw_value")]
#[test]
fn test_raw_value_in_map_key() {
#[derive(RefCast)]
#[repr(transparent)]
struct RawMapKey(RawValue);
impl<'de> Deserialize<'de> for &'de RawMapKey {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let raw_value = <&RawValue>::deserialize(deserializer)?;
Ok(RawMapKey::ref_cast(raw_value))
}
}
impl PartialEq for RawMapKey {
fn eq(&self, other: &Self) -> bool {
self.0.get() == other.0.get()
}
}
impl Eq for RawMapKey {}
impl Hash for RawMapKey {
fn hash<H: Hasher>(&self, hasher: &mut H) {
self.0.get().hash(hasher);
}
}
let map_from_str: HashMap<&RawMapKey, &RawValue> =
serde_json::from_str(r#" {"\\k":"\\v"} "#).unwrap();
let (map_k, map_v) = map_from_str.into_iter().next().unwrap();
assert_eq!("\"\\\\k\"", map_k.0.get());
assert_eq!("\"\\\\v\"", map_v.get());
}
#[cfg(feature = "raw_value")]
#[test]
fn test_boxed_raw_value() {
#[derive(Serialize, Deserialize)]
struct Wrapper {
a: i8,
b: Box<RawValue>,
c: i8,
}
let wrapper_from_str: Wrapper =
serde_json::from_str(r#"{"a": 1, "b": {"foo": 2}, "c": 3}"#).unwrap();
assert_eq!(r#"{"foo": 2}"#, wrapper_from_str.b.get());
let wrapper_from_reader: Wrapper =
serde_json::from_reader(br#"{"a": 1, "b": {"foo": 2}, "c": 3}"#.as_ref()).unwrap();
assert_eq!(r#"{"foo": 2}"#, wrapper_from_reader.b.get());
let wrapper_from_value: Wrapper =
serde_json::from_value(json!({"a": 1, "b": {"foo": 2}, "c": 3})).unwrap();
assert_eq!(r#"{"foo":2}"#, wrapper_from_value.b.get());
let wrapper_to_string = serde_json::to_string(&wrapper_from_str).unwrap();
assert_eq!(r#"{"a":1,"b":{"foo": 2},"c":3}"#, wrapper_to_string);
let wrapper_to_value = serde_json::to_value(&wrapper_from_str).unwrap();
assert_eq!(json!({"a": 1, "b": {"foo": 2}, "c": 3}), wrapper_to_value);
let array_from_str: Vec<Box<RawValue>> =
serde_json::from_str(r#"["a", 42, {"foo": "bar"}, null]"#).unwrap();
assert_eq!(r#""a""#, array_from_str[0].get());
assert_eq!(r#"42"#, array_from_str[1].get());
assert_eq!(r#"{"foo": "bar"}"#, array_from_str[2].get());
assert_eq!(r#"null"#, array_from_str[3].get());
let array_from_reader: Vec<Box<RawValue>> =
serde_json::from_reader(br#"["a", 42, {"foo": "bar"}, null]"#.as_ref()).unwrap();
assert_eq!(r#""a""#, array_from_reader[0].get());
assert_eq!(r#"42"#, array_from_reader[1].get());
assert_eq!(r#"{"foo": "bar"}"#, array_from_reader[2].get());
assert_eq!(r#"null"#, array_from_reader[3].get());
let array_to_string = serde_json::to_string(&array_from_str).unwrap();
assert_eq!(r#"["a",42,{"foo": "bar"},null]"#, array_to_string);
}
#[cfg(feature = "raw_value")]
#[test]
fn test_raw_invalid_utf8() {
let j = &[b'"', b'\xCE', b'\xF8', b'"'];
let value_err = serde_json::from_slice::<Value>(j).unwrap_err();
let raw_value_err = serde_json::from_slice::<Box<RawValue>>(j).unwrap_err();
assert_eq!(
value_err.to_string(),
"invalid unicode code point at line 1 column 4",
);
assert_eq!(
raw_value_err.to_string(),
"invalid unicode code point at line 1 column 4",
);
}
#[cfg(feature = "raw_value")]
#[test]
fn test_serialize_unsized_value_to_raw_value() {
assert_eq!(
serde_json::value::to_raw_value("foobar").unwrap().get(),
r#""foobar""#,
);
}
#[test]
fn test_borrow_in_map_key() {
#[derive(Deserialize, Debug)]
struct Outer {
#[allow(dead_code)]
map: BTreeMap<MyMapKey, ()>,
}
#[derive(Ord, PartialOrd, Eq, PartialEq, Debug)]
struct MyMapKey(usize);
impl<'de> Deserialize<'de> for MyMapKey {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: de::Deserializer<'de>,
{
let s = <&str>::deserialize(deserializer)?;
let n = s.parse().map_err(de::Error::custom)?;
Ok(MyMapKey(n))
}
}
let value = json!({ "map": { "1": null } });
Outer::deserialize(&value).unwrap();
}
#[test]
fn test_value_into_deserializer() {
#[derive(Deserialize)]
struct Outer {
inner: Inner,
}
#[derive(Deserialize)]
struct Inner {
string: String,
}
let mut map = BTreeMap::new();
map.insert("inner", json!({ "string": "Hello World" }));
let outer = Outer::deserialize(serde::de::value::MapDeserializer::new(
map.iter().map(|(k, v)| (*k, v)),
))
.unwrap();
assert_eq!(outer.inner.string, "Hello World");
let outer = Outer::deserialize(map.into_deserializer()).unwrap();
assert_eq!(outer.inner.string, "Hello World");
}
#[test]
fn hash_positive_and_negative_zero() {
let rand = std::hash::RandomState::new();
let k1 = serde_json::from_str::<Number>("0.0").unwrap();
let k2 = serde_json::from_str::<Number>("-0.0").unwrap();
if cfg!(feature = "arbitrary_precision") {
assert_ne!(k1, k2);
assert_ne!(rand.hash_one(k1), rand.hash_one(k2));
} else {
assert_eq!(k1, k2);
assert_eq!(rand.hash_one(k1), rand.hash_one(k2));
}
}